Abstract

High speed Optical Coherence Tomography (OCT) has made it possible to rapidly capture densely sampled 3D volume data. One key application is the acquisition of high quality in vivo volumetric data sets of the human retina. Since the volume is acquired in a few seconds, eye movement during the scan process leads to distortion, which limits the accuracy of quantitative measurements using 3D OCT data. In this paper, we present a novel software based method to correct motion artifacts in OCT raster scans. Motion compensation is performed retrospectively using image registration algorithms on the OCT data sets themselves. Multiple, successively acquired volume scans with orthogonal fast scan directions are registered retrospectively in order to estimate and correct eye motion. Registration is performed by optimizing a large scale numerical problem as given by a global objective function using one dense displacement field for each input volume and special regularization based on the time structure of the acquisition process. After optimization, each volume is undistorted and a single merged volume is constructed that has superior signal quality compared to the input volumes. Experiments were performed using 3D OCT data from the macula and optic nerve head acquired with a high-speed ultra-high resolution 850 nm spectral OCT as well as wide field data acquired with a 1050 nm swept source OCT instrument. Evaluation of registration performance and result stability as well as visual inspection shows that the algorithm can correct for motion in all three dimensions and on a per A-scan basis. Corrected volumes do not show visible motion artifacts. In addition, merging multiple motion corrected and registered volumes leads to improved signal quality. These results demonstrate that motion correction and merging improves image quality and should also improve morphometric measurement accuracy from volumetric OCT data.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, Thorofare, NJ, 2004).
  3. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  5. G. Häusler and M. W. Linduer, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
    [CrossRef]
  6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  7. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt.36(25), 6548–6553 (1997).
    [CrossRef] [PubMed]
  8. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  9. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009 (Springer, 2009), pp. 100–107.
  10. D. A. Robinson, “Mechanics of human saccadic eye movement,” J. Physiol.174(2), 245–264 (1964).
    [PubMed]
  11. J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
    [CrossRef] [PubMed]
  12. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
    [CrossRef] [PubMed]
  13. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
    [CrossRef]
  14. T. M. Jørgensen and B. Sander, “Contrast enhancement of retinal B-scans from OCT3/Stratus by image registration—clinical application,” Proc. SPIE6426, 642608, 642608-7 (2007).
    [CrossRef]
  15. D. A. Tolliver, H. Ishikawa, J. S. Schuman, and G. L. Miller, “An in-painting method for combining multiple SD-OCT scans with applications to Z-motion recovery, noise reduction and longitudinal studies,” in ARVO 2009 Annual Meeting Abstracts (2009), Vol. 50, p. 1100.
  16. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
    [CrossRef] [PubMed]
  17. D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
    [CrossRef] [PubMed]
  18. B. Považay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express17(5), 4134–4150 (2009).
    [CrossRef] [PubMed]
  19. I. J. Schoenberg, Cardinal Spline Interpolation, Regional Conference Series In Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, 1973).
  20. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
    [CrossRef] [PubMed]
  21. J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Series in Operations Research (Springer, New York, 2006).
  22. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).
  23. R. Fletcher, “A new approach to variable metric algorithms,” Comput. J.13(3), 317–322 (1970).
    [CrossRef]
  24. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  25. F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
    [CrossRef] [PubMed]
  26. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999).
    [CrossRef]
  27. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18(8), 8338–8352 (2010).
    [CrossRef] [PubMed]
  28. B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
    [CrossRef] [PubMed]

2010

2009

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

B. Považay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, “Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography,” Opt. Express17(5), 4134–4150 (2009).
[CrossRef] [PubMed]

2008

2007

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

T. M. Jørgensen and B. Sander, “Contrast enhancement of retinal B-scans from OCT3/Stratus by image registration—clinical application,” Proc. SPIE6426, 642608, 642608-7 (2007).
[CrossRef]

2005

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
[CrossRef] [PubMed]

2004

2002

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

1999

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999).
[CrossRef]

1998

G. Häusler and M. W. Linduer, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

1997

1995

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

1993

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1984

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).

1970

R. Fletcher, “A new approach to variable metric algorithms,” Comput. J.13(3), 317–322 (1970).
[CrossRef]

1964

D. A. Robinson, “Mechanics of human saccadic eye movement,” J. Physiol.174(2), 245–264 (1964).
[PubMed]

Adelson, E. H.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).

Anderson, C. H.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Barry, S.

Baumann, B.

Beaton, S.

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Bergen, J. R.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).

Bilonick, R. A.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

Bird, A. C.

Bizheva, K.

Burt, P. J.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).

Cable, A.

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y. L.

Chinn, S. R.

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

Clausi, D. A.

Collignon, A.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
[CrossRef] [PubMed]

Drexler, W.

Duker, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

Egan, C. A.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Esmaeelpour, M.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt.36(25), 6548–6553 (1997).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Ferguson, R. D.

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Fletcher, R.

R. Fletcher, “A new approach to variable metric algorithms,” Comput. J.13(3), 317–322 (1970).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

Gabriele, M. L.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hamann, B.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

Hammer, D. X.

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler and M. W. Linduer, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt.36(25), 6548–6553 (1997).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Hofer, B.

Hougaard, J. L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
[CrossRef] [PubMed]

Huang, D.

Ishikawa, H.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

Izatt, J. A.

Jiang, J.

Jørgensen, T. M.

T. M. Jørgensen and B. Sander, “Contrast enhancement of retinal B-scans from OCT3/Stratus by image registration—clinical application,” Proc. SPIE6426, 642608, 642608-7 (2007).
[CrossRef]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
[CrossRef] [PubMed]

Kagemann, L.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Kim, J. S.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Kulhavy, M.

Larsen, M.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
[CrossRef] [PubMed]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Lexer, F.

Lin, C. P.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Linduer, M. W.

G. Häusler and M. W. Linduer, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

Maes, F.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
[CrossRef] [PubMed]

Magill, J. C.

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

Marchal, G.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
[CrossRef] [PubMed]

Mishra, A.

Ogden, J. M.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).

Paunescu, L. A.

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

Potsaid, B.

Považay, B.

Puliafito, C. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Robinson, D. A.

D. A. Robinson, “Mechanics of human saccadic eye movement,” J. Physiol.174(2), 245–264 (1964).
[PubMed]

Ruttimann, U. E.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

Sander, B.

T. M. Jørgensen and B. Sander, “Contrast enhancement of retinal B-scans from OCT3/Stratus by image registration—clinical application,” Proc. SPIE6426, 642608, 642608-7 (2007).
[CrossRef]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999).
[CrossRef]

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Suetens, P.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
[CrossRef] [PubMed]

Sung, K. R.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

Thévenaz, P.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

Thrane, L.

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
[CrossRef] [PubMed]

Torti, C.

Tumlinson, A. R.

Unser, M.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

Vandermeulen, D.

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
[CrossRef] [PubMed]

Werner, J. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Wollstein, G.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

Wong, A.

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999).
[CrossRef]

Xu, J. A.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999).
[CrossRef]

Zawadzki, R. J.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

Appl. Opt.

Br. J. Ophthalmol.

J. S. Kim, H. Ishikawa, K. R. Sung, J. A. Xu, G. Wollstein, R. A. Bilonick, M. L. Gabriele, L. Kagemann, J. S. Duker, J. G. Fujimoto, and J. S. Schuman, “Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography,” Br. J. Ophthalmol.93(8), 1057–1063 (2009).
[CrossRef] [PubMed]

B. Sander, M. Larsen, L. Thrane, J. L. Hougaard, and T. M. Jørgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” Br. J. Ophthalmol.89(2), 207–212 (2005).
[CrossRef] [PubMed]

Comput. J.

R. Fletcher, “A new approach to variable metric algorithms,” Comput. J.13(3), 317–322 (1970).
[CrossRef]

IEEE Trans. Image Process.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process.7(1), 27–41 (1998).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality image registration by maximization of mutual information,” IEEE Trans. Med. Imaging16(2), 187–198 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999).
[CrossRef]

D. X. Hammer, R. D. Ferguson, J. C. Magill, L. A. Paunescu, S. Beaton, H. Ishikawa, G. Wollstein, and J. S. Schuman, “Active retinal tracker for clinical optical coherence tomography systems,” J. Biomed. Opt.10(2), 024038 (2005).
[CrossRef] [PubMed]

G. Häusler and M. W. Linduer, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

J. Physiol.

D. A. Robinson, “Mechanics of human saccadic eye movement,” J. Physiol.174(2), 245–264 (1964).
[PubMed]

Opt. Commun.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607, 642607-11 (2007).
[CrossRef]

T. M. Jørgensen and B. Sander, “Contrast enhancement of retinal B-scans from OCT3/Stratus by image registration—clinical application,” Proc. SPIE6426, 642608, 642608-7 (2007).
[CrossRef]

RCA Eng.

E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid methods in image processing,” RCA Eng.29, 33–41 (1984).

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, Thorofare, NJ, 2004).

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009 (Springer, 2009), pp. 100–107.

D. A. Tolliver, H. Ishikawa, J. S. Schuman, and G. L. Miller, “An in-painting method for combining multiple SD-OCT scans with applications to Z-motion recovery, noise reduction and longitudinal studies,” in ARVO 2009 Annual Meeting Abstracts (2009), Vol. 50, p. 1100.

I. J. Schoenberg, Cardinal Spline Interpolation, Regional Conference Series In Applied Mathematics (Society for Industrial and Applied Mathematics, Philadelphia, 1973).

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer Series in Operations Research (Springer, New York, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

OCT Scanning and scanner coordinate system schematic. Left: 1D acquisition (A-scan). A single depth profile is acquired which measures backscattered intensity vs. axial dimension (depth). Middle: 2D imaging (B-scan). The OCT beam is scanned in a transverse direction while A-scans (red arrows) are acquired. Right: 3D acquisition. Multiple B-Scans are acquired such that A-scans are sampled on a 2D grid in the transverse plane.

Fig. 2
Fig. 2

Schematic of XFAST/YFAST raster scan. Solid arrows indicate B-scan acqusitions, dotted arrows indicate flyback. Left: An XFAST scan consists of B-scans parallel to the x-axis in the OCT scanner coordinate system. An YFAST scan (right) consists of B-scans parallel to the y-axis. d fast and d slow are interchanged between the two scan types. In both cases, the A-scan sampling locations form a 2D grid in the transverse plane of the scanner coordinate system. The transverse position of the first A-scan p 1 is shown for each pattern.

Fig. 3
Fig. 3

Schematic showing relation between object and scanner coordinate system when affected by motion in the transverse plane. Left: En face view in the scanner coordinate system. Dotted arrows indicate B-scans, dots indicate individual A-scans. The background shows an en face fundus projection as it would be acquired given motion. The two red arrows indicate discontinuities from motion. Right: En face view in the object coordinate system. Arrows colored with the same color as left indicate where B-scans from the scanner coordinate system are located in the object coordinate system. The background shows an en face view of the object in the object coordinate system. Individual black dots on each B-Scan indicate corresponding A-Scans in the two coordinate systems. For corresponding A-scans, the position difference in the object and scanner coordinate system is Disp(t) at the corresponding time.

Fig. 4
Fig. 4

Schematic showing multi-resolution optimization for two orthogonal volumes represented by their en face fundus projections. First, each volume is successively down-sampled to create a multi-resolution image pyramid (orange arrows). Then, starting with the lowest resolution volumes, corresponding volumes are registered (blue arrows). The registration result is then mapped to the next higher resolution pyramid level (green arrows). This is repeated until the original resolution levels are registered.

Fig. 5
Fig. 5

Graphs showing dependence of registration performance on key algorithm parameters. A: Mean mutual information increase through registration over all registered data sets for different α and for three different axial regularizer strengths αz. B: Mean stability index over all data sets for different alpha and αz.

Fig. 6
Fig. 6

Visual depiction of registration performance in relation to alpha parameter. A: En face fundus projection of XFast input volume. B: En face fundus projection of YFast input volume. C: Checkerboard image between the en face fundus projections of the volumes from A and B registered with α=0.0001 . D: Checkerboard image with the same inputs as C registered with α=0.1 . E: Checkerboard image with the same inputs as C and D registered with α=10 . Lower right: Zoomed views on areas indicated with rectangles in B to E.

Fig. 7
Fig. 7

Structural variations before and after motion correction. Left column: Two original X-FAST input volumes quasi-rigidly registered. Middle column: Two disjoint volume pairs with the same X-FAST input volumes as used in the left column motion corrected and merged with α=0.0001 and α z =0.1 . The two merged volumes were then quasi rigidly registered and are shown. Right column: Same as middle column with α=0.1 . Top Row: Checkerboard fundus views of different quasi-rigidly registered volumes. Middle Row: Red-green composite images of the central slices in y direction. Bottom Row: Red-green composite images of the central slices in x direction. Both the original volumes and the volumes that were processed with a too low alpha show considerable variability in structure. In contrast, the volumes that were corrected with the optimal settings (right) show a very high degree of agreement.

Fig. 8
Fig. 8

Cross sectional images from corresponding volumes showing signal and image quality improvement. A: Input cross sectional image along the fast direction of a volume from IS2. B: Corresponding image produced by registering and merging two volumes from IS2. C: Corresponding image from registering and merging six volumes from IS2.

Fig. 9
Fig. 9

Comparison of Optic Nerve Head Volumes from IS1 before and after Registration and Merging. Top row: En face fundus projections. Second row: Single central slice in Y direction. (blue line in fundus) Third row: Single central slice in X direction. (red line in fundus) First column: XFAST input volume. Second column: Registered and merged result volume using as inputs the volumes of the first two columns. Third column: Registered and merged result volume using all six volumes from IS1 as input. Cross-sectional images are cropped axially.

Fig. 10
Fig. 10

Comparison of Macular Region Volumes from IS2 before and after Registration and Merging. Top row: En face fundus projections. Second row: Single central slice in Y direction. (blue line in fundus) Third row: Single central slice in X direction. (red line in fundus) First column: XFAST input volume. Second column: Registered and merged result volume using as inputs the volumes of the first two columns. Third column: Registered and merged result volume using all six volumes from IS2 as input. Cross-sectional images are cropped axially.

Fig. 11
Fig. 11

Comparison between 12 mm x 12 mm Data Sets from IS3 before and after registration and merging. Top row: En face fundus projections. Second row: Single central slice in Y direction. (blue line in fundus) Third row: Single central slice in X direction. (red line in fundus) Last row: Single central en face slice. First column: XFAST input volume. Second column: Registered and merged result volume using as inputs the volumes of the first two columns. Third column: Registered and merged result volume using all ten volumes from IS3 as input. Cross-sectional images are cropped axially to only show actual structure.

Tables (2)

Tables Icon

Table 1 Characteristics of Imaging Devices

Tables Icon

Table 2 Imaging Session Description

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

AScan(p,t): 3 × d
Disp(t): 3 .
AScan(p,t)=AScan(pDisp(t)+Disp( t 0 ), t 0 ).
AScan(p,t)=AScan(pDisp(t),0).
Interp( p i )=AScan( p i , t i )=AScan( p i Disp( t i ),0).
Interp( p i +Disp( t i ))=AScan( p i ,0)+ e interp ,
F(Disp(t))= v1=1 N v v2=v1+1 N v θ(v1,v2)|| R v1,v2 | | 2 +α t || ( δDisp(t) δt ) T ( 1 0 0 0 1 0 0 0 α z )| | 2 δt
SNR=10 log 10 (max( A 2 )/ σ 2 )

Metrics