Abstract

In this work, we explored the potential of measuring shear wave propagation using optical coherence elastography (OCE) based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a 20 MHz piezoelectric transducer (circular element 8.5 mm diameter) transmitting sine-wave bursts of 400 μs, synchronized with the OCT swept source wavelength sweep. The acoustic radiation force (ARF) was applied to two gelatin phantoms (differing in gelatin concentration by weight, 8% vs. 14%). Differential OCT phase maps, measured with and without the ARF, demonstrate microscopic displacement generated by shear wave propagation in these phantoms of different stiffness. We present preliminary results of OCT derived shear wave propagation velocity and modulus, and compare these results to rheometer measurements. The results demonstrate the feasibility of shear wave OCE (SW-OCE) for high-resolution microscopic homogeneous tissue mechanical property characterization.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
    [CrossRef] [PubMed]
  2. C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
    [CrossRef] [PubMed]
  3. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  4. X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, and S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett.34(19), 2894–2896 (2009).
    [CrossRef] [PubMed]
  5. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
    [CrossRef] [PubMed]
  6. M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
    [PubMed]
  7. M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
    [CrossRef] [PubMed]
  8. L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
    [CrossRef] [PubMed]
  9. M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
    [CrossRef] [PubMed]
  10. W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
    [CrossRef] [PubMed]
  11. K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
    [CrossRef] [PubMed]
  12. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004).
    [CrossRef] [PubMed]
  13. K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
    [PubMed]
  14. M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
    [CrossRef] [PubMed]
  15. K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol.32(1), 61–72 (2006).
    [CrossRef] [PubMed]
  16. R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
    [CrossRef] [PubMed]
  17. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  18. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010).
    [CrossRef] [PubMed]
  19. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express18(13), 14183–14190 (2010).
    [CrossRef] [PubMed]
  20. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
    [CrossRef] [PubMed]
  21. X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng.57(4), 953–959 (2010).
    [CrossRef] [PubMed]
  22. B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
    [CrossRef] [PubMed]
  23. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express15(4), 1627–1638 (2007).
    [CrossRef] [PubMed]
  24. J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
    [CrossRef] [PubMed]
  25. K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol.29(12), 1715–1723 (2003).
    [CrossRef] [PubMed]
  26. J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl.22(2), 707–725 (2006).
    [CrossRef]
  27. M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(7), 1300–1313 (2006).
    [CrossRef] [PubMed]
  28. G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2026–2035 (2006).
    [CrossRef] [PubMed]
  29. J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl.22(2), 681–706 (2006).
    [CrossRef]
  30. M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
    [CrossRef] [PubMed]
  31. A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(11), 2380–2387 (2009).
    [CrossRef] [PubMed]
  32. A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
    [CrossRef] [PubMed]
  33. M. Orescanin, “Complex shear modulus reconstruction using ultrasound,” thesis (University of Illinois at Urbana-Champaign, 2010).
  34. W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
    [CrossRef] [PubMed]
  35. M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A.96(12), 6603–6608 (1999).
    [CrossRef] [PubMed]
  36. S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am.115(6), 2781–2785 (2004).
    [CrossRef] [PubMed]
  37. K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging24(3), 129–138 (2002).
    [PubMed]
  38. Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control37(2), 45–53 (1990).
    [CrossRef] [PubMed]
  39. S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am.112(3), 884–889 (2002).
    [CrossRef] [PubMed]
  40. E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol.24(8), 1183–1199 (1998).
    [CrossRef] [PubMed]
  41. C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
    [CrossRef] [PubMed]
  42. C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
    [CrossRef] [PubMed]

2012 (2)

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

C. Li, G. Guan, X. Cheng, Z. Huang, and R. K. Wang, “Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography,” Opt. Lett.37(4), 722–724 (2012).
[CrossRef] [PubMed]

2011 (3)

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (3)

2008 (1)

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (8)

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol.32(1), 61–72 (2006).
[CrossRef] [PubMed]

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl.22(2), 707–725 (2006).
[CrossRef]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl.22(2), 681–706 (2006).
[CrossRef]

2004 (4)

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am.115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

2003 (2)

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol.29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

2002 (4)

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging24(3), 129–138 (2002).
[PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am.112(3), 884–889 (2002).
[CrossRef] [PubMed]

2000 (1)

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

1999 (3)

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[PubMed]

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A.96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

1998 (4)

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol.24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

1990 (1)

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control37(2), 45–53 (1990).
[CrossRef] [PubMed]

Adie, S. G.

Aglyamov, S. R.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Alam, S. K.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Amador, C.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

An, K.-N.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Balu-Maestro, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Bentley, R.

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging24(3), 129–138 (2002).
[PubMed]

Bercoff, J.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

Berg, W. A.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B. E.

Cable, A. E.

Callé, S.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Cavanaugh, B. C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Chan, R. C.

Chau, A. H.

Chen, Q.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Chen, S.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am.115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am.112(3), 884–889 (2002).
[CrossRef] [PubMed]

Cheng, X.

Cohen-Bacrie, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Cosgrove, D. O.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Dahl, J. J.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
[CrossRef] [PubMed]

de Boer, J. F.

Doré, C. J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Duncan, D. D.

Elkateb Hachemi, M.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Emelianov, S. Y.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Fatemi, M.

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am.115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am.112(3), 884–889 (2002).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[PubMed]

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A.96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Fernandez, F. J.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Fink, M.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

Fong, K. L.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Fowlkes, J. B.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Frinkley, K. D.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
[CrossRef] [PubMed]

Garra, B.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Gay, J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Gerstmann, D. K.

Greenleaf, J. F.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am.115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am.112(3), 884–889 (2002).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[PubMed]

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A.96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Guan, G.

Henry, J. P.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Hillman, T. R.

Hooley, R. J.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Huang, Z.

Iftimia, N.

Il’inskii, Y.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Ilinskii, Y. A.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

Insana, M. F.

Jiang, J. Y.

John, R.

Juhan, V.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Kaazempur-Mofrad, M. R.

Kallel, F.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Karl, W. C.

Karpiouk, A. B.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Kennedy, B. F.

Khalil, A. S.

Kirkpatrick, S. J.

Konofagou, E.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Konofagou, E. E.

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol.24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

Krouskop, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Li, C.

Liang, X.

Liu, G.

Locatelli, M.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Mariampillai, A.

McAleavey, S.

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol.29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

McAleavey, S. A.

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

McLaughlin, J.

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl.22(2), 707–725 (2006).
[CrossRef]

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl.22(2), 681–706 (2006).
[CrossRef]

McLaughlin, R. A.

Mendelson, E. B.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Munce, N. R.

Nadkarni, S.

Negron, L. A.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Nightingale, K.

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol.32(1), 61–72 (2006).
[CrossRef] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol.29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Nightingale, K. R.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging24(3), 129–138 (2002).
[PubMed]

Nightingale, R.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Nightingale, R. W.

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[PubMed]

Ohlinger, R.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Ophir, J.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol.24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

Orescanin, M.

Ostrovsky, L.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Palmeri, M.

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol.32(1), 61–72 (2006).
[CrossRef] [PubMed]

Palmeri, M. L.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

Pinton, G. F.

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

Quirk, B. C.

Randall, C.

Remenieras, J. P.

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Renzi, D.

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl.22(2), 681–706 (2006).
[CrossRef]

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl.22(2), 707–725 (2006).
[CrossRef]

Rudenko, O.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Rudenko, O. V.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Sampson, D. D.

Sarvazyan, A.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Sarvazyan, A. P.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Sato, J.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control37(2), 45–53 (1990).
[CrossRef] [PubMed]

Sato, T.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control37(2), 45–53 (1990).
[CrossRef] [PubMed]

Schäfer, F. K. W.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Schmitt, J. M.

Shishkov, M.

Soo, M. S.

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Standish, B. A.

Stavros, A. T.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Stutz, D. L.

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[PubMed]

Sun, C.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Sutin, A.

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

Svensson, W. E.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Swanson, S. D.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Tanter, M.

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

Tardivon, A.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Tearney, G. J.

Toohey, K. S.

Tourasse, C.

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Trahey, G.

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol.32(1), 61–72 (2006).
[CrossRef] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol.29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

Trahey, G. E.

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging24(3), 129–138 (2002).
[PubMed]

Urban, M. W.

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

Varghese, T.

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Vitkin, I. A.

Walker, W. F.

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Wang, M. H.

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
[CrossRef] [PubMed]

Wang, R. K.

Yamakoshi, Y.

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control37(2), 45–53 (1990).
[CrossRef] [PubMed]

Yang, V. X.

Yang, V. X. D.

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Yun, S. H.

Zabolotskaya, E. A.

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (2)

C. Amador, M. W. Urban, S. Chen, Q. Chen, K.-N. An, and J. F. Greenleaf, “Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms,” IEEE Trans. Biomed. Eng.58(6), 1706–1714 (2011).
[CrossRef] [PubMed]

X. Liang and S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng.57(4), 953–959 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (6)

A. B. Karpiouk, S. R. Aglyamov, Y. A. Ilinskii, E. A. Zabolotskaya, and S. Y. Emelianov, “Assessment of shear modulus of tissue using ultrasound radiation force acting on a spherical acoustic inhomogeneity,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control56(11), 2380–2387 (2009).
[CrossRef] [PubMed]

Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control37(2), 45–53 (1990).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, K. L. Fong, G. E. Trahey, and K. R. Nightingale, “Dynamic mechanical response of elastic spherical inclusions to impulsive acoustic radiation force excitation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2065–2079 (2006).
[CrossRef] [PubMed]

J. Bercoff, M. Tanter, and M. Fink, “Supersonic shear imaging: a new technique for soft tissue elasticity mapping,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control51(4), 396–409 (2004).
[CrossRef] [PubMed]

M. L. Palmeri, S. A. McAleavey, G. E. Trahey, and K. R. Nightingale, “Ultrasonic tracking of acoustic radiation force-induced displacements in homogeneous media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(7), 1300–1313 (2006).
[CrossRef] [PubMed]

G. F. Pinton and G. E. Trahey, “Continuous delay estimation with polynomial splines,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control53(11), 2026–2035 (2006).
[CrossRef] [PubMed]

Inverse Probl. (2)

J. McLaughlin and D. Renzi, “Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts,” Inverse Probl.22(2), 681–706 (2006).
[CrossRef]

J. McLaughlin and D. Renzi, “Using level set based inversion of arrival times to recover shear wave speed in transient elastography and supersonic imaging,” Inverse Probl.22(2), 707–725 (2006).
[CrossRef]

J. Acoust. Soc. Am. (3)

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am.112(3), 884–889 (2002).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion,” J. Acoust. Soc. Am.115(6), 2781–2785 (2004).
[CrossRef] [PubMed]

L. Ostrovsky, A. Sutin, Y. Il’inskii, O. Rudenko, and A. Sarvazyan, “Radiation force and shear motions in inhomogeneous media,” J. Acoust. Soc. Am.121(3), 1324–1331 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

C. Sun, B. Standish, and V. X. D. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Opt. Express (9)

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, and B. E. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express15(4), 1627–1638 (2007).
[CrossRef] [PubMed]

B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, and D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express17(24), 21762–21772 (2009).
[CrossRef] [PubMed]

X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express18(13), 14183–14190 (2010).
[CrossRef] [PubMed]

S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010).
[CrossRef] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (1)

W. F. Walker, F. J. Fernandez, and L. A. Negron, “A method of imaging viscoelastic parameters with acoustic radiation force,” Phys. Med. Biol.45(6), 1437–1447 (2000).
[CrossRef] [PubMed]

Proc. Inst. Mech. Eng. H (1)

J. Ophir, S. K. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, “Elastography: ultrasonic estimation and imaging of the elastic properties of tissues,” Proc. Inst. Mech. Eng. H213(3), 203–233 (1999).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Fatemi and J. F. Greenleaf, “Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission,” Proc. Natl. Acad. Sci. U.S.A.96(12), 6603–6608 (1999).
[CrossRef] [PubMed]

Radiology (1)

W. A. Berg, D. O. Cosgrove, C. J. Doré, F. K. W. Schäfer, W. E. Svensson, R. J. Hooley, R. Ohlinger, E. B. Mendelson, C. Balu-Maestro, M. Locatelli, C. Tourasse, B. C. Cavanaugh, V. Juhan, A. T. Stavros, A. Tardivon, J. Gay, J. P. Henry, C. Cohen-Bacrie, and BE1 Investigators, “Shear-wave elastography improves the specificity of breast US: the BE1 multinational study of 939 masses,” Radiology262(2), 435–449 (2012).
[CrossRef] [PubMed]

Science (1)

M. Fatemi and J. F. Greenleaf, “Ultrasound-stimulated vibro-acoustic spectrography,” Science280(5360), 82–85 (1998).
[CrossRef] [PubMed]

Ultrason. Imaging (3)

K. R. Nightingale, R. W. Nightingale, D. L. Stutz, and G. E. Trahey, “Acoustic radiation force impulse imaging of in vivo vastus medialis muscle under varying isometric load,” Ultrason. Imaging24(2), 100–108 (2002).
[PubMed]

M. Fatemi and J. F. Greenleaf, “Application of radiation force in noncontact measurement of the elastic parameters,” Ultrason. Imaging21(2), 147–154 (1999).
[PubMed]

K. R. Nightingale, R. Bentley, and G. E. Trahey, “Observations of tissue response to acoustic radiation force: opportunities for imaging,” Ultrason. Imaging24(3), 129–138 (2002).
[PubMed]

Ultrasonics (1)

M. Elkateb Hachemi, S. Callé, and J. P. Remenieras, “Transient displacement induced in shear wave elastography: comparison between analytical results and ultrasound measurements,” Ultrasonics44(Suppl 1), e221–e225 (2006).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (6)

K. Nightingale, M. S. Soo, R. Nightingale, and G. Trahey, “Acoustic radiation force impulse imaging: in vivo demonstration of clinical feasibility,” Ultrasound Med. Biol.28(2), 227–235 (2002).
[CrossRef] [PubMed]

K. Nightingale, M. Palmeri, and G. Trahey, “Analysis of contrast in images generated with transient acoustic radiation force,” Ultrasound Med. Biol.32(1), 61–72 (2006).
[CrossRef] [PubMed]

K. Nightingale, S. McAleavey, and G. Trahey, “Shear-wave generation using acoustic radiation force: in vivo and ex vivo results,” Ultrasound Med. Biol.29(12), 1715–1723 (2003).
[CrossRef] [PubMed]

M. L. Palmeri, M. H. Wang, J. J. Dahl, K. D. Frinkley, and K. R. Nightingale, “Quantifying hepatic shear modulus in vivo using acoustic radiation force,” Ultrasound Med. Biol.34(4), 546–558 (2008).
[CrossRef] [PubMed]

E. E. Konofagou and J. Ophir, “A new elastographic method for estimation and imaging of lateral displacements, lateral strains, corrected axial strains and Poisson’s ratios in tissues,” Ultrasound Med. Biol.24(8), 1183–1199 (1998).
[CrossRef] [PubMed]

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, “Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics,” Ultrasound Med. Biol.24(9), 1419–1435 (1998).
[CrossRef] [PubMed]

Other (1)

M. Orescanin, “Complex shear modulus reconstruction using ultrasound,” thesis (University of Illinois at Urbana-Champaign, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Using a focused ARF impulse generated by a transducer, shear waves can be produced at the focal point. We detect the shear wave that travels within the titanium dioxide-gelatin phantom in the direction indicated by the white arrow labeled Cs. The transducer focal depth for this study was 20 mm. B-mode OCT images were taken at the focal point for phase map analysis.

Fig. 2
Fig. 2

The ARF-OCE experimental setup consisted of the existing SS-OCT system, a titanium dioxide-gelatin phantom, a focused transducer (20 MHz, f-number 2.35), an amplifier and a function generator (Agilent 33250A 80 MHz, Function / Arbitrary Waveform Generator) synchronized with the SS-OCT system.

Fig. 3
Fig. 3

B-mode OCT structural images (a and b) and the corresponding B-mode phase map (c) of the titanium dioxide-gelatin phantom (14%) were taken with the SS-OCT system. The dashed box(a) represents the location of the superimposed fitted sine wave observed in the phase map. The white arrow (b) indicates the position where the M-mode OCT images (d and e), with the ARF on and off, respectively, were acquired and synchronized with the OCT swept-source wavelength sweep. The B-mode phase map of the phantom was used to measure Δr and Δφ for the calculation of the shear wave speed. The color scale represented the change of the phase value (radians). The M-mode phase map (f) from this phantom was used to calculate the shear wave frequency. To better illustrate the calculation of Δr, MATLAB was used to to plot an isophase curve which now shows the experimental data (blue). The red curve is a best fit with a polynomial (g).

Tables (1)

Tables Icon

Table 1 The mechanical properties of the phantoms

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F= 2αI C .
C S (ω)= 2( μ 1 2 + ω 2 μ 2 2 )/ρ( μ 1 + μ 1 2 + ω 2 μ 2 2 ) .
C S (ω)= ωΔr Δφ .
C s = μ ρ
E=2(1+ν)μ3μ=3   C S 2 ρ,

Metrics