Abstract

Optical coherence tomography (OCT) has the combined advantage of high temporal (µsec) and spatial (<10µm) resolution. These features make it an attractive tool to study the dynamic relationship between neural activity and the surrounding blood vessels in the spinal cord, a topic that is poorly understood. Here we present work that aims to optimize an in vivo OCT imaging model of the rodent spinal cord. In this study we image the microvascular networks of both rats and mice using speckle variance OCT. This is the first report of depth resolved imaging of the in vivo spinal cord using an entirely endogenous contrast mechanism.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Fetcho and D. M. O’Malley, “Visualization of active neural circuitry in the spinal cord of intact zebrafish,” J. Neurophysiol.73(1), 399–406 (1995).
    [PubMed]
  2. E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
    [CrossRef] [PubMed]
  3. S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
    [CrossRef] [PubMed]
  4. F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009).
    [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  6. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
    [CrossRef] [PubMed]
  7. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010).
    [CrossRef] [PubMed]
  8. V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
    [CrossRef] [PubMed]
  9. Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011).
    [CrossRef] [PubMed]
  10. B. T. Cox and P. C. Beard, “Photoacoustic tomography with a single detector in a reverberant cavity,” J. Acoust. Soc. Am.125(3), 1426–1436 (2009).
    [CrossRef] [PubMed]
  11. D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012).
    [CrossRef] [PubMed]
  12. J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt.49(8), 1219–1233 (2010).
    [CrossRef] [PubMed]
  13. S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express3(2), 360–365 (2012).
    [CrossRef] [PubMed]
  14. R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
    [CrossRef] [PubMed]
  15. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
    [CrossRef] [PubMed]
  16. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  17. A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
    [CrossRef] [PubMed]
  18. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
    [CrossRef] [PubMed]
  19. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  20. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
    [CrossRef] [PubMed]
  21. M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
    [CrossRef] [PubMed]
  22. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
    [CrossRef]
  23. J. K. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magn. Reson. Imaging28(8), 1225–1233 (2010).
    [CrossRef] [PubMed]
  24. P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
    [CrossRef] [PubMed]
  25. D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
    [CrossRef] [PubMed]

2012

D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012).
[CrossRef] [PubMed]

S. Ye, R. Yang, J. Xiong, K. K. Shung, Q. Zhou, C. Li, and Q. Ren, “Label-free imaging of zebrafish larvae in vivo by photoacoustic microscopy,” Biomed. Opt. Express3(2), 360–365 (2012).
[CrossRef] [PubMed]

2011

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011).
[CrossRef] [PubMed]

2010

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18(3), 2477–2494 (2010).
[CrossRef] [PubMed]

J. Laufer, B. Cox, E. Zhang, and P. Beard, “Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme,” Appl. Opt.49(8), 1219–1233 (2010).
[CrossRef] [PubMed]

A. Mariampillai, M. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
[CrossRef] [PubMed]

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

J. K. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magn. Reson. Imaging28(8), 1225–1233 (2010).
[CrossRef] [PubMed]

2009

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009).
[CrossRef] [PubMed]

B. T. Cox and P. C. Beard, “Photoacoustic tomography with a single detector in a reverberant cavity,” J. Acoust. Soc. Am.125(3), 1426–1436 (2009).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
[CrossRef] [PubMed]

2008

2002

E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
[CrossRef] [PubMed]

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

1995

J. R. Fetcho and D. M. O’Malley, “Visualization of active neural circuitry in the spinal cord of intact zebrafish,” J. Neurophysiol.73(1), 399–406 (1995).
[PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Atochin, D. N.

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

Attwell, D.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

Ayata, C.

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

Barry, S.

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
[CrossRef] [PubMed]

Beard, P.

Beard, P. C.

B. T. Cox and P. C. Beard, “Photoacoustic tomography with a single detector in a reverberant cavity,” J. Acoust. Soc. Am.125(3), 1426–1436 (2009).
[CrossRef] [PubMed]

Beaumont, E.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009).
[CrossRef] [PubMed]

Boas, D. A.

Bouma, B. E.

Brieu, N.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009).
[CrossRef] [PubMed]

Buchan, A. M.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

Buckley, E. M.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Cable, A.

Cable, A. E.

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charpak, S.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

Chatni, M. R.

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

Chen, Z.

Choe, R.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Cox, B.

Cox, B. T.

B. T. Cox and P. C. Beard, “Photoacoustic tomography with a single detector in a reverberant cavity,” J. Acoust. Soc. Am.125(3), 1426–1436 (2009).
[CrossRef] [PubMed]

Danielli, A.

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

Deliolanis, N. C.

D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012).
[CrossRef] [PubMed]

Dubeau, S.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009).
[CrossRef] [PubMed]

Durduran, T.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Dziennis, S.

Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011).
[CrossRef] [PubMed]

Enager, P.

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

Favazza, C. P.

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

Fernandes, P.

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

Fetcho, J. R.

J. R. Fetcho and D. M. O’Malley, “Visualization of active neural circuitry in the spinal cord of intact zebrafish,” J. Neurophysiol.73(1), 399–406 (1995).
[PubMed]

Figley, C. R.

J. K. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magn. Reson. Imaging28(8), 1225–1233 (2010).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gorczynska, I.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hamel, E.

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, P. L.

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

Jarvi, M.

Jia, Y.

Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011).
[CrossRef] [PubMed]

Jiang, J.

Jiang, J. Y.

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
[CrossRef] [PubMed]

Kamino, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Kang, J. U.

Khurana, M.

Kim, M. N.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Kocharyan, A.

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

Laufer, J.

Lauritzen, M.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

Lee, K.

Leitch, J. K.

J. K. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magn. Reson. Imaging28(8), 1225–1233 (2010).
[CrossRef] [PubMed]

Lesage, F.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009).
[CrossRef] [PubMed]

Leung, M. K.

Li, C.

Li, P.

Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

Macvicar, B. A.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

Manley, G. T.

E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
[CrossRef] [PubMed]

Mariampillai, A.

Maslov, K. I.

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

Mesquita, R. C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Miyakawa, N.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Mochida, H.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Momose-Sato, Y.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Moriyama, E. H.

Munce, N. R.

Newman, E. A.

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

Ntziachristos, V.

D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012).
[CrossRef] [PubMed]

O’Malley, D. M.

J. R. Fetcho and D. M. O’Malley, “Visualization of active neural circuitry in the spinal cord of intact zebrafish,” J. Neurophysiol.73(1), 399–406 (1995).
[PubMed]

Offenhauser, N.

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

Oh, W.-Y.

Oshio, K.

E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
[CrossRef] [PubMed]

Piilgaard, H.

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, W.

Radhakrishnan, H.

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35(1), 43–45 (2010).
[CrossRef] [PubMed]

Razansky, D.

D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012).
[CrossRef] [PubMed]

Ren, Q.

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Ruvinskaya, S.

Sakadzic, S.

Sasaki, S.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Sato, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shinomiya, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Shishkov, M.

Shung, K. K.

Solenov, E. I.

E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
[CrossRef] [PubMed]

Srinivasan, V. J.

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stroman, P. W.

J. K. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magn. Reson. Imaging28(8), 1225–1233 (2010).
[CrossRef] [PubMed]

Sunar, U.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Vakoc, B. J.

Verkman, A. S.

E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
[CrossRef] [PubMed]

Vetrivel, L.

E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
[CrossRef] [PubMed]

Vinegoni, C.

D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012).
[CrossRef] [PubMed]

Vitkin, A.

Vitkin, I. A.

Wang, L. V.

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

Wang, R. K.

Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011).
[CrossRef] [PubMed]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Wilson, B. C.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Wu, W.

Xiong, J.

Yang, R.

Yang, V. X.

Yao, J.

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

Yaseen, M. A.

Yazawa, I.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Ye, S.

Yodh, A. G.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Yu, G.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Yu, L.

Zhang, E.

Zhang, K.

Zhou, C.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

Zhou, Q.

Appl. Opt.

Biomed. Opt. Express

Curr. Pharm. Biotechnol.

D. Razansky, N. C. Deliolanis, C. Vinegoni, and V. Ntziachristos, “Deep tissue optical and optoacoustic molecular imaging technologies for pre-clinical research and drug discovery,” Curr. Pharm. Biotechnol.13(4), 504–522 (2012).
[CrossRef] [PubMed]

J. Acoust. Soc. Am.

B. T. Cox and P. C. Beard, “Photoacoustic tomography with a single detector in a reverberant cavity,” J. Acoust. Soc. Am.125(3), 1426–1436 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. R. Chatni, J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. V. Wang, “Functional photoacoustic microscopy of pH,” J. Biomed. Opt.16(10), 100503 (2011).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

P. Enager, H. Piilgaard, N. Offenhauser, A. Kocharyan, P. Fernandes, E. Hamel, and M. Lauritzen, “Pathway-specific variations in neurovascular and neurometabolic coupling in rat primary somatosensory cortex,” J. Cereb. Blood Flow Metab.29(5), 976–986 (2009).
[CrossRef] [PubMed]

V. J. Srinivasan, D. N. Atochin, H. Radhakrishnan, J. Y. Jiang, S. Ruvinskaya, W. Wu, S. Barry, A. E. Cable, C. Ayata, P. L. Huang, and D. A. Boas, “Optical coherence tomography for the quantitative study of cerebrovascular physiology,” J. Cereb. Blood Flow Metab.31(6), 1339–1345 (2011).
[CrossRef] [PubMed]

J. Neurophysiol.

J. R. Fetcho and D. M. O’Malley, “Visualization of active neural circuitry in the spinal cord of intact zebrafish,” J. Neurophysiol.73(1), 399–406 (1995).
[PubMed]

J. Neurosci. Methods

E. I. Solenov, L. Vetrivel, K. Oshio, G. T. Manley, and A. S. Verkman, “Optical measurement of swelling and water transport in spinal cord slices from aquaporin null mice,” J. Neurosci. Methods113(1), 85–90 (2002).
[CrossRef] [PubMed]

Magn. Reson. Imaging

J. K. Leitch, C. R. Figley, and P. W. Stroman, “Applying functional MRI to the spinal cord and brainstem,” Magn. Reson. Imaging28(8), 1225–1233 (2010).
[CrossRef] [PubMed]

Nat. Photonics

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Nature

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar, and E. A. Newman, “Glial and neuronal control of brain blood flow,” Nature468(7321), 232–243 (2010).
[CrossRef] [PubMed]

Neuroimage

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Neurosci. Lett.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett.454(1), 105–109 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Philos. Transact. A Math. Phys. Eng. Sci.

R. C. Mesquita, T. Durduran, G. Yu, E. M. Buckley, M. N. Kim, C. Zhou, R. Choe, U. Sunar, and A. G. Yodh, “Direct measurement of tissue blood flow and metabolism with diffuse optics,” Philos. Transact. A Math. Phys. Eng. Sci.369(1955), 4390–4406 (2011).
[CrossRef] [PubMed]

PLoS ONE

Y. Jia, P. Li, S. Dziennis, and R. K. Wang, “Responses of peripheral blood flow to acute hypoxia and hyperoxia as measured by optical microangiography,” PLoS ONE6(10), e26802 (2011).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MP4 (3703 KB)     
» Media 2: MP4 (3663 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the swept-source OCT system used in this set of experiments. A 54 kHz polygon filter based swept source laser was used with grating that enables buffering to 108kHz and post amplified by a semiconductor optical amplifier (SOA). The coherence of the laser source is approximately 1.5 mm. PC: polarization controller; CIR: optical circulator; C: collimator; L: lenses; FBG: fiber Bragg gratings; D: photodetector; BD: balanced detector.

Fig. 2
Fig. 2

Experimental setup of rat SV-OCT. Panel A shows an overview of the imaging station with the male Wistar rat pinned to the imaging breadboard. Panel B shows a close up of the pin fixation. The animal is resting on a heated gel pack to maintain 37°C body temperature (panel B). The animal underwent tracheotomy and is receiving inhalational anesthetic. Breath-hold was conducted to reduce bulk motion from >40μm in the anterior-posterior direction to <8μm (panel C). A close up of the exposed spinal cord is shown in panel D. Panel E demonstrates structural OCT data. Panel F shows an en face projection of the SV-OCT data. A histology specimen is provided in panel G for comparison, with the dorsal vein (1) marked.

Fig. 3
Fig. 3

Experimental setup of mouse SV-OCT imaging. Bulk motion correction of the spinal column was carried out with a homemade jig as shown in panel A. Briefly, we used two pairs of forceps to gently grasp the spinal column one vertebral body level above and below the exposed spinal cord. A histology specimen is provided in panel B that demonstrates the dorsal vein (1), dorsal white matter (2) and dorsal gray matter (3). A structural OCT image is shown in panel C that demonstrates the dorsal vein, dorsal white and gray matter. SV-OCT images are shown in panel D demonstrating the microvascular network of the mouse spinal cord resolving vessels with a diameter of approximately 10-20μm. Panel E illustrates a depth dependent false color map of the mouse spinal cord.

Fig. 4
Fig. 4

A three-dimensional structural OCT volume (3mm(x) × 3mm (y) × 2mm (z)) of the mouse spinal cord (Media 1).

Fig. 5
Fig. 5

A three-dimensional SV-OCT volume (3mm(x) × 3mm (y) × 2mm (z)) of the mouse spinal cord (Media 2).

Metrics