Abstract

A cost-effective, stable and ultrasensitive localized surface plasmon resonance (LSPR) sensor based on gold nanoparticles (AuNPs) partially embedded in transparent substrate is presented. Partially embedded AuNPs were prepared by thermal annealing of gold thin films deposited on glass at a temperature close to the glass transition temperature of the substrate. Annealed samples were optically characterized by using spectroscopic ellipsometry and compare with theoretical modeling to understand the optical responses from the samples. By combining the partially-embedded AuNPs substrate with a microfluidic flow cell and dove prism in an ellipsometry setup, an ultrasensitive change in the LSPR signal can be detected. The refractive index sensitivity obtained from the phase measurement is up to 1938 degrees/RIU which is several times higher than that of synthesized colloidal gold nanoparticles. The sample is further used to investigate the interactions between primary and secondary antibodies. The bio-molecular detection limit of the LSPR signal is down to 20 pM. Our proposed sensor is label free, non-destructive, with high sensitivity, low cost, and easy to fabricate. These features make it feasible for commercialization in biomedical applications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3(8), 1057–1062 (2003).
    [CrossRef]
  3. M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
    [CrossRef] [PubMed]
  4. N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
    [CrossRef] [PubMed]
  5. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
    [CrossRef] [PubMed]
  6. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  7. S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
    [CrossRef] [PubMed]
  8. I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
    [CrossRef] [PubMed]
  9. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett.25(6), 372–374 (2000).
    [CrossRef] [PubMed]
  10. N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem.76(18), 5370–5378 (2004).
    [CrossRef] [PubMed]
  11. T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
    [CrossRef] [PubMed]
  12. X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
    [CrossRef] [PubMed]
  13. G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
    [CrossRef] [PubMed]
  14. T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
    [CrossRef]
  15. T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
    [CrossRef]
  16. O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011).
    [CrossRef] [PubMed]
  17. O. Kedem, A. Vaskevich, and I. Rubinstein, “Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements,” J. Phys. Chem. Lett.2(10), 1223–1226 (2011).
    [CrossRef]
  18. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
    [CrossRef] [PubMed]
  19. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
    [CrossRef]
  20. R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010).
    [CrossRef] [PubMed]
  21. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
  22. A. Serrano, O. Rodríguez de la Fuente, and M. A. García, “Extended and localized surface plasmons in annealed Au films on glass substrates,” J. Appl. Phys.108(7), 074303 (2010).
    [CrossRef]
  23. D. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
    [CrossRef]
  24. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973).
    [CrossRef]
  25. J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
    [CrossRef]
  26. D. Aspnes, “Plasmonics and effective-medium theories,” Thin Solid Films519(9), 2571–2574 (2011).
    [CrossRef]
  27. T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
    [CrossRef]
  28. M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films - a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
    [CrossRef]
  29. I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys.96(5), 3004–3011 (2004).
    [CrossRef]
  30. R. S. Moirangthem, Y. C. Chang, and P. K. Wei, “Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry,” Opt. Lett.36(5), 775–777 (2011).
    [CrossRef] [PubMed]
  31. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem.35(1-3), 187–191 (1996).
    [CrossRef]
  32. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
    [CrossRef] [PubMed]
  33. D. Gerion and G. J. Day, “Localized surface plasmon resonance for bioprocess development, monitoring, and validation,” BioProcess Int.9, 70–75 (2011).
  34. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci.241, 20–22 (1973).

2011

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011).
[CrossRef] [PubMed]

O. Kedem, A. Vaskevich, and I. Rubinstein, “Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements,” J. Phys. Chem. Lett.2(10), 1223–1226 (2011).
[CrossRef]

D. Aspnes, “Plasmonics and effective-medium theories,” Thin Solid Films519(9), 2571–2574 (2011).
[CrossRef]

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films - a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

D. Gerion and G. J. Day, “Localized surface plasmon resonance for bioprocess development, monitoring, and validation,” BioProcess Int.9, 70–75 (2011).

R. S. Moirangthem, Y. C. Chang, and P. K. Wei, “Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry,” Opt. Lett.36(5), 775–777 (2011).
[CrossRef] [PubMed]

2010

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett.35(7), 956–958 (2010).
[CrossRef] [PubMed]

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

A. Serrano, O. Rodríguez de la Fuente, and M. A. García, “Extended and localized surface plasmons in annealed Au films on glass substrates,” J. Appl. Phys.108(7), 074303 (2010).
[CrossRef]

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

2009

T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
[CrossRef]

2008

T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
[CrossRef]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
[CrossRef] [PubMed]

2005

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

2004

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem.76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys.96(5), 3004–3011 (2004).
[CrossRef]

2003

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3(8), 1057–1062 (2003).
[CrossRef]

2002

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

2001

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
[CrossRef] [PubMed]

2000

1998

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
[CrossRef]

1996

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem.35(1-3), 187–191 (1996).
[CrossRef]

1982

D. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
[CrossRef]

1973

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973).
[CrossRef]

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci.241, 20–22 (1973).

Abeles, B.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973).
[CrossRef]

Ahn, J.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Arwin, H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

Aspnes, D.

D. Aspnes, “Plasmonics and effective-medium theories,” Thin Solid Films519(9), 2571–2574 (2011).
[CrossRef]

D. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
[CrossRef]

Bendikov, T. A.

T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
[CrossRef] [PubMed]

T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
[CrossRef]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
[CrossRef]

Chang, Y. C.

R. S. Moirangthem, Y. C. Chang, and P. K. Wei, “Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry,” Opt. Lett.36(5), 775–777 (2011).
[CrossRef] [PubMed]

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

Chilkoti, A.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem.76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
[CrossRef]

Cody, G. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973).
[CrossRef]

Cohen, R. W.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973).
[CrossRef]

Coutts, M. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973).
[CrossRef]

Day, G. J.

D. Gerion and G. J. Day, “Localized surface plasmon resonance for bioprocess development, monitoring, and validation,” BioProcess Int.9, 70–75 (2011).

El-Sayed, I. H.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci.241, 20–22 (1973).

García, M. A.

A. Serrano, O. Rodríguez de la Fuente, and M. A. García, “Extended and localized surface plasmons in annealed Au films on glass substrates,” J. Appl. Phys.108(7), 074303 (2010).
[CrossRef]

Gerion, D.

D. Gerion and G. J. Day, “Localized surface plasmon resonance for bioprocess development, monitoring, and validation,” BioProcess Int.9, 70–75 (2011).

Goomanovsky, M.

T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
[CrossRef]

Grigorenko, A. N.

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Hao, Y.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Harkati, C.

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
[CrossRef]

Holder, D.

T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
[CrossRef]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys.96(5), 3004–3011 (2004).
[CrossRef]

Hsu, S. H.

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

Huang, X.

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem.35(1-3), 187–191 (1996).
[CrossRef]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
[CrossRef]

Kabashin, A. V.

Kalyuzhny, G.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
[CrossRef] [PubMed]

Karakouz, T.

T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
[CrossRef]

T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
[CrossRef]

T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
[CrossRef] [PubMed]

Kedem, O.

O. Kedem, A. Vaskevich, and I. Rubinstein, “Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements,” J. Phys. Chem. Lett.2(10), 1223–1226 (2011).
[CrossRef]

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011).
[CrossRef] [PubMed]

Kim, M. G.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

Kobayashi, T.

Kravets, V. G.

Lamarre, J. M.

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
[CrossRef]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

Lee, J. J.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

Lee, K. S.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

Lee, S. W.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

Loncaric, M.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films - a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
[CrossRef]

Martinu, L.

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
[CrossRef]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3(8), 1057–1062 (2003).
[CrossRef]

Miller, M. M.

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

Moirangthem, R. S.

R. S. Moirangthem, Y. C. Chang, and P. K. Wei, “Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry,” Opt. Lett.36(5), 775–777 (2011).
[CrossRef] [PubMed]

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

Nath, N.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem.76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem.35(1-3), 187–191 (1996).
[CrossRef]

Oates, T. W. H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

Okamoto, T.

Rabinkov, A.

T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
[CrossRef] [PubMed]

Rodríguez de la Fuente, O.

A. Serrano, O. Rodríguez de la Fuente, and M. A. García, “Extended and localized surface plasmons in annealed Au films on glass substrates,” J. Appl. Phys.108(7), 074303 (2010).
[CrossRef]

Roorda, S.

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
[CrossRef]

Rubinstein, I.

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011).
[CrossRef] [PubMed]

O. Kedem, A. Vaskevich, and I. Rubinstein, “Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements,” J. Phys. Chem. Lett.2(10), 1223–1226 (2011).
[CrossRef]

T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
[CrossRef]

T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
[CrossRef]

T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
[CrossRef] [PubMed]

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
[CrossRef] [PubMed]

Sambles, J. R.

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys.96(5), 3004–3011 (2004).
[CrossRef]

Sancho-Parramon, J.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films - a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

Schedin, F.

Schneeweiss, M. A.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
[CrossRef] [PubMed]

Serrano, A.

A. Serrano, O. Rodríguez de la Fuente, and M. A. García, “Extended and localized surface plasmons in annealed Au films on glass substrates,” J. Appl. Phys.108(7), 074303 (2010).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shanzer, A.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
[CrossRef] [PubMed]

Shin, Y. B.

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

Tesler, A. B.

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011).
[CrossRef] [PubMed]

T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
[CrossRef]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3(8), 1057–1062 (2003).
[CrossRef]

Vaskevich, A.

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011).
[CrossRef] [PubMed]

O. Kedem, A. Vaskevich, and I. Rubinstein, “Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements,” J. Phys. Chem. Lett.2(10), 1223–1226 (2011).
[CrossRef]

T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
[CrossRef]

T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
[CrossRef]

T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
[CrossRef] [PubMed]

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
[CrossRef] [PubMed]

Wang, H.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Wang, T.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Wang, Y.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Wei, P. K.

R. S. Moirangthem, Y. C. Chang, and P. K. Wei, “Investigation of surface plasmon biosensing using gold nanoparticles enhanced ellipsometry,” Opt. Lett.36(5), 775–777 (2011).
[CrossRef] [PubMed]

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

Wormeester, H.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

Yamaguchi, I.

Yang, B.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem.35(1-3), 187–191 (1996).
[CrossRef]

Yu, Z.

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
[CrossRef]

Zhang, H.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Zhang, J.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhao, R.

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Zorc, H.

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films - a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

ACS Nano

O. Kedem, A. B. Tesler, A. Vaskevich, and I. Rubinstein, “Sensitivity and optimization of localized surface plasmon resonance transducers,” ACS Nano5(2), 748–760 (2011).
[CrossRef] [PubMed]

S. W. Lee, K. S. Lee, J. Ahn, J. J. Lee, M. G. Kim, and Y. B. Shin, “Highly sensitive biosensing using arrays of plasmonic Au nanodisks realized by nanoimprint lithography,” ACS Nano5(2), 897–904 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

T. Karakouz, A. B. Tesler, T. A. Bendikov, A. Vaskevich, and I. Rubinstein, “Highly stable localized plasmon transducers obtained by thermal embedding of gold island films on glass,” Adv. Mater. (Deerfield Beach Fla.)20(20), 3893–3899 (2008).
[CrossRef]

Anal. Bioanal. Chem.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors,” Anal. Bioanal. Chem.379(7-8), 920–930 (2004).
[CrossRef] [PubMed]

Anal. Chem.

N. Nath and A. Chilkoti, “Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size,” Anal. Chem.76(18), 5370–5378 (2004).
[CrossRef] [PubMed]

T. A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, and I. Rubinstein, “Biological sensing and interface design in gold island film based localized plasmon transducers,” Anal. Chem.80(19), 7487–7498 (2008).
[CrossRef] [PubMed]

N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem.74(3), 504–509 (2002).
[CrossRef] [PubMed]

BioProcess Int.

D. Gerion and G. J. Day, “Localized surface plasmon resonance for bioprocess development, monitoring, and validation,” BioProcess Int.9, 70–75 (2011).

Biosens. Bioelectron.

R. S. Moirangthem, Y. C. Chang, S. H. Hsu, and P. K. Wei, “Surface plasmon resonance ellipsometry based sensor for studying biomolecular interaction,” Biosens. Bioelectron.25(12), 2633–2638 (2010).
[CrossRef] [PubMed]

Chem. Mater.

T. Karakouz, D. Holder, M. Goomanovsky, A. Vaskevich, and I. Rubinstein, “Morphology and refractive index sensitivity of gold island films,” Chem. Mater.21(24), 5875–5885 (2009).
[CrossRef]

Chem. Rev.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev.111(6), 3828–3857 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

G. Kalyuzhny, M. A. Schneeweiss, A. Shanzer, A. Vaskevich, and I. Rubinstein, “Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films,” J. Am. Chem. Soc.123(13), 3177–3178 (2001).
[CrossRef] [PubMed]

J. Appl. Phys.

A. Serrano, O. Rodríguez de la Fuente, and M. A. García, “Extended and localized surface plasmons in annealed Au films on glass substrates,” J. Appl. Phys.108(7), 074303 (2010).
[CrossRef]

I. R. Hooper and J. R. Sambles, “Sensing using differential surface plasmon ellipsometry,” J. Appl. Phys.96(5), 3004–3011 (2004).
[CrossRef]

J. Phys. Chem. B

M. M. Miller and A. A. Lazarides, “Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment,” J. Phys. Chem. B109(46), 21556–21565 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. Lett.

O. Kedem, A. Vaskevich, and I. Rubinstein, “Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements,” J. Phys. Chem. Lett.2(10), 1223–1226 (2011).
[CrossRef]

Langmuir

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir14(19), 5636–5648 (1998).
[CrossRef]

Nano Lett.

A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3(8), 1057–1062 (2003).
[CrossRef]

I. H. El-Sayed, X. Huang, and M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5(5), 829–834 (2005).
[CrossRef] [PubMed]

Nanotechnology

X. Zhang, J. Zhang, H. Wang, Y. Hao, X. Zhang, T. Wang, Y. Wang, R. Zhao, H. Zhang, and B. Yang, “Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity,” Nanotechnology21(46), 465702 (2010).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Nat. Phys. Sci.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nat. Phys. Sci.241, 20–22 (1973).

Opt. Lett.

Phys. Rev. B

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B8(8), 3689–3701 (1973).
[CrossRef]

Prog. Surf. Sci.

T. W. H. Oates, H. Wormeester, and H. Arwin, “Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry,” Prog. Surf. Sci.86(11-12), 328–376 (2011).
[CrossRef]

Sens. Actuators B Chem.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem.35(1-3), 187–191 (1996).
[CrossRef]

Thin Solid Films

M. Lončarić, J. Sancho-Parramon, and H. Zorc, “Optical properties of gold island films - a spectroscopic ellipsometry study,” Thin Solid Films519(9), 2946–2950 (2011).
[CrossRef]

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films479(1-2), 232–237 (2005).
[CrossRef]

D. Aspnes, “Plasmonics and effective-medium theories,” Thin Solid Films519(9), 2571–2574 (2011).
[CrossRef]

D. Aspnes, “Optical properties of thin films,” Thin Solid Films89(3), 249–262 (1982).
[CrossRef]

Other

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Absorption spectra of the thermally annealed Au film with different thickness [inset figures show a picture of prepared sample as well as a plot of absorption peak position versus film thickness]. (b) Schematic diagram showing sample fabrication process. (c) SEM image of 5nm thick gold film after annealing, which has an absorption peak at 546nm. [The measured sizes of the gold nano islands are labeled in the inset].

Fig. 2
Fig. 2

Spectral response of the ellipsometric parameters (a) Ψ, (b) ∆, and (c) TM-mode reflectance spectrum for 5nm thick annealed Au film shown together with the model generated spectrum. (d) Schematic plot of the model used to fit the experimental data. (e) & (f) Dielectric constants of the AuNPs exposed to air and embedded in glass substrate.

Fig. 3
Fig. 3

Spectroscopic ellipsometric signals (a) Ψ, (b) ∆, measured under TIR mode (inset figure) for different thickness annealed Au film when expose to the water.(c) and (d) shows the calculated data using EMA.(e) and (f) shows the extracted dielectric constants of the AuNP in the EMA1 layer.

Fig. 4
Fig. 4

Bulk sensitivity response of 5nm thick annealed Au film exposed to glycerol-water mixtures with various refractive indices by measuring the ellipsometric signals (a) Ψ, and (b) ∆. (c) Shows the change in ∆ versus the change in refractive index (δn) of the surrounding aqueous medium measured at wavelength of 575nm.

Fig. 5
Fig. 5

(a) The absorption spectra of the colloidal gold nanoparticles in water having different sizes [Inset figure is a photograph of the prepared solutions]. SEM images of colloidal gold nanoparticle of various sizes on substrate with average sizes of (b) 13nm, (c) 45nm, (d) 66nm, and (e) 96nm.

Fig. 6
Fig. 6

Spectral response of the ellipsometric parameters for (a) Ψ, and (b) ∆ for glycerol-water mixtures with various refractive indices, changes of phase signal, ∆ (c) and the dynamic response (d) measured at fixed wavelength (575nm) with varying refractive index (δn) of glycerol-water mixtures. Measurements are done on the 45nm AuNPs film.

Fig. 7
Fig. 7

Comparison of bulk sensitivity for (a) thermally annealed Au film with different thickness of 4, 5, 6, 8,10nm and (b) AuNPs of different sizes 13, 45, 66, 96nm based in the ellipsometric phase signals, ∆.

Fig. 8
Fig. 8

A schematic plot and simulated total electric field intensity distribution maps for (a) Au nanoparticles sitting on glass which is completely exposed to the air. (b) Partially embedded Au nanoparticles in glass in the x-z plane. (c) Plot of the intensity of the electric field versus x-axis at diameter (dashed line) of gold nanoparticle partially embedded inside the glass (black color) and one completely exposed in the air (red color) for an incident angle at 45 degrees.

Fig. 9
Fig. 9

(a) and (b) shows the dynamic response of the ellipsometry signals (Ψ,Δ) upon the capturing of anti-EGFR and its subsequent interaction with secondary anti-bodies.

Tables (1)

Tables Icon

Table 1 Ellipsometry fitting parameters of the different thickness of annealed gold thin films where %fVoid, %fSlide, %fGold represent the fractional volume ration of air, glass and gold in corresponding effective medium approximation (EMA) layers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

tanΨ=| R p R s |and  Δ= δ p δ s

Metrics