Abstract

Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt.13(4), 040503 (2008).
    [CrossRef] [PubMed]
  2. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med.3(71), 71ra15 (2011).
    [CrossRef] [PubMed]
  3. P. Samineni, A. deCruz, T. E. Villafaña, W. S. Warren, and M. C. Fischer, “Pump-probe imaging of historical pigments used in paintings,” Opt. Lett., doc. ID 160175 (posted 29 February 2012, in press).
  4. P. Mahou, N. Olivier, G. Labroille, L. Duloquin, J.-M. Sintes, N. Peyriéras, R. Legouis, D. Débarre, and E. Beaurepaire, “Third-harmonic generation, four-wave mixing microscopy of tissues and embryos,” Biomed. Opt. Express2(10), 2837–2849 (2011).
    [CrossRef] [PubMed]
  5. K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
    [CrossRef]
  6. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  7. M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, “Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses,” Opt. Lett.30(12), 1551–1553 (2005).
    [CrossRef] [PubMed]
  8. M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, “Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method,” Opt. Express16(6), 4192–4205 (2008).
    [CrossRef] [PubMed]
  9. P. Samineni, Z. Perret, W. S. Warren, and M. C. Fischer, “Measurements of nonlinear refractive index in scattering media,” Opt. Express18(12), 12727–12735 (2010).
    [CrossRef] [PubMed]
  10. P. Samineni, B. Li, J. W. Wilson, W. S. Warren, and M. C. Fischer, “Cross-phase modulation imaging,” Opt. Lett.37(5), 800–802 (2012).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A40(9), 5063–5072 (1989).
    [CrossRef] [PubMed]
  12. P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
    [CrossRef]
  13. P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett.27(18), 1634–1636 (2002).
    [CrossRef] [PubMed]
  14. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
    [CrossRef] [PubMed]
  15. Reference [14] defined the TPA cross section with an extra factor of two that is divided out here for direct comparison to the value in Ref. [13].
  16. E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
    [CrossRef]
  17. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
    [CrossRef]
  18. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
    [CrossRef] [PubMed]
  19. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett.22(2), 135–136 (1997).
    [CrossRef] [PubMed]
  20. I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A114(43), 11483–11491 (2010).
    [CrossRef] [PubMed]
  21. R. Lazova and J. M. Pawelek, “Why do melanomas get so dark?” Exp. Dermatol.18(11), 934–938 (2009).
    [CrossRef] [PubMed]
  22. D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92(2), 603–612 (2007).
    [CrossRef] [PubMed]
  23. M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, “Self-phase modulation signatures of neuronal activity,” Opt. Lett.33(3), 219–221 (2008).
    [CrossRef] [PubMed]
  24. H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
    [CrossRef] [PubMed]
  25. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition rate lasers: how to manage thermal effects,” Opt. Express13(20), 7976–7981 (2005).
    [CrossRef] [PubMed]

2012

P. Samineni, A. deCruz, T. E. Villafaña, W. S. Warren, and M. C. Fischer, “Pump-probe imaging of historical pigments used in paintings,” Opt. Lett., doc. ID 160175 (posted 29 February 2012, in press).

P. Samineni, B. Li, J. W. Wilson, W. S. Warren, and M. C. Fischer, “Cross-phase modulation imaging,” Opt. Lett.37(5), 800–802 (2012).
[CrossRef] [PubMed]

2011

2010

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

P. Samineni, Z. Perret, W. S. Warren, and M. C. Fischer, “Measurements of nonlinear refractive index in scattering media,” Opt. Express18(12), 12727–12735 (2010).
[CrossRef] [PubMed]

2009

R. Lazova and J. M. Pawelek, “Why do melanomas get so dark?” Exp. Dermatol.18(11), 934–938 (2009).
[CrossRef] [PubMed]

2008

2007

D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92(2), 603–612 (2007).
[CrossRef] [PubMed]

H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
[CrossRef] [PubMed]

2005

2002

2001

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
[CrossRef] [PubMed]

2000

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

1997

P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
[CrossRef]

K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett.22(2), 135–136 (1997).
[CrossRef] [PubMed]

1995

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

1989

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A40(9), 5063–5072 (1989).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A40(9), 5063–5072 (1989).
[CrossRef] [PubMed]

Alfano, R. R.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A40(9), 5063–5072 (1989).
[CrossRef] [PubMed]

Baldeck, P. L.

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A40(9), 5063–5072 (1989).
[CrossRef] [PubMed]

Beaurepaire, E.

Berg, L.-E.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

Cao, Y.

H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
[CrossRef] [PubMed]

Chapple, P.

P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
[CrossRef]

Ciocca, M.

Débarre, D.

deCruz, A.

P. Samineni, A. deCruz, T. E. Villafaña, W. S. Warren, and M. C. Fischer, “Pump-probe imaging of historical pigments used in paintings,” Opt. Lett., doc. ID 160175 (posted 29 February 2012, in press).

Dewhirst, M.

H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
[CrossRef] [PubMed]

Dhollande, C.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

Drobizhev, M.

Duloquin, L.

Ekvall, K.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

Escobedo-Lozoya, Y.

Fischer, M. C.

Franco, M. A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, D.

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt.13(4), 040503 (2008).
[CrossRef] [PubMed]

Gnoli, A.

Gratton, E.

Grillon, G.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Halbhuber, K. J.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
[CrossRef] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hermann, J.

P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
[CrossRef]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

König, K.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
[CrossRef] [PubMed]

K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett.22(2), 135–136 (1997).
[CrossRef] [PubMed]

Krieg, R.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
[CrossRef] [PubMed]

Labroille, G.

Lazova, R.

R. Lazova and J. M. Pawelek, “Why do melanomas get so dark?” Exp. Dermatol.18(11), 934–938 (2009).
[CrossRef] [PubMed]

Le Blanc, C.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Legouis, R.

Li, B.

Liu, H. C.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mahou, P.

Makarov, N. S.

Mantulin, W. W.

Matthews, T. E.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med.3(71), 71ra15 (2011).
[CrossRef] [PubMed]

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt.13(4), 040503 (2008).
[CrossRef] [PubMed]

McDuff, R.

P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
[CrossRef]

Mckay, T.

P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
[CrossRef]

Mialocq, J.-C.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

Miller, A.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mysyrowicz, A.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Naskrecki, R.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

Nibbering, E. T. J.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Oldham, M.

H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
[CrossRef] [PubMed]

Oliver, T.

H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
[CrossRef] [PubMed]

Olivier, N.

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Pawelek, J. M.

R. Lazova and J. M. Pawelek, “Why do melanomas get so dark?” Exp. Dermatol.18(11), 934–938 (2009).
[CrossRef] [PubMed]

Perret, Z.

Peuckert, C.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
[CrossRef] [PubMed]

Peyriéras, N.

Piletic, I. R.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med.3(71), 71ra15 (2011).
[CrossRef] [PubMed]

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, “Self-phase modulation signatures of neuronal activity,” Opt. Lett.33(3), 219–221 (2008).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt.13(4), 040503 (2008).
[CrossRef] [PubMed]

M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, “Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method,” Opt. Express16(6), 4192–4205 (2008).
[CrossRef] [PubMed]

Pommeret, S.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

Prade, B. S.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Razzari, L.

Rebane, A.

Righini, M.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sakhalkar, H. S.

H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
[CrossRef] [PubMed]

Samineni, P.

Selim, M. A.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med.3(71), 71ra15 (2011).
[CrossRef] [PubMed]

Simpson, M. J.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med.3(71), 71ra15 (2011).
[CrossRef] [PubMed]

Sintes, J.-M.

So, P. T. C.

Staromlynska, J.

P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
[CrossRef]

Tian, P.

Tirlapur, U. K.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

van der Meulen, P.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

Villafaña, T. E.

P. Samineni, A. deCruz, T. E. Villafaña, W. S. Warren, and M. C. Fischer, “Pump-probe imaging of historical pigments used in paintings,” Opt. Lett., doc. ID 160175 (posted 29 February 2012, in press).

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Wagner, W.

Warren, W. S.

P. Samineni, B. Li, J. W. Wilson, W. S. Warren, and M. C. Fischer, “Cross-phase modulation imaging,” Opt. Lett.37(5), 800–802 (2012).
[CrossRef] [PubMed]

P. Samineni, A. deCruz, T. E. Villafaña, W. S. Warren, and M. C. Fischer, “Pump-probe imaging of historical pigments used in paintings,” Opt. Lett., doc. ID 160175 (posted 29 February 2012, in press).

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med.3(71), 71ra15 (2011).
[CrossRef] [PubMed]

P. Samineni, Z. Perret, W. S. Warren, and M. C. Fischer, “Measurements of nonlinear refractive index in scattering media,” Opt. Express18(12), 12727–12735 (2010).
[CrossRef] [PubMed]

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

M. C. Fischer, H. C. Liu, I. R. Piletic, Y. Escobedo-Lozoya, R. Yasuda, and W. S. Warren, “Self-phase modulation signatures of neuronal activity,” Opt. Lett.33(3), 219–221 (2008).
[CrossRef] [PubMed]

M. C. Fischer, H. C. Liu, I. R. Piletic, and W. S. Warren, “Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method,” Opt. Express16(6), 4192–4205 (2008).
[CrossRef] [PubMed]

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt.13(4), 040503 (2008).
[CrossRef] [PubMed]

M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, “Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses,” Opt. Lett.30(12), 1551–1553 (2005).
[CrossRef] [PubMed]

P. Tian and W. S. Warren, “Ultrafast measurement of two-photon absorption by loss modulation,” Opt. Lett.27(18), 1634–1636 (2002).
[CrossRef] [PubMed]

Wilson, J. W.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Yasuda, R.

Ye, T.

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt.13(4), 040503 (2008).
[CrossRef] [PubMed]

M. C. Fischer, T. Ye, G. Yurtsever, A. Miller, M. Ciocca, W. Wagner, and W. S. Warren, “Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses,” Opt. Lett.30(12), 1551–1553 (2005).
[CrossRef] [PubMed]

Yurtsever, G.

Appl. Phys. B

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81(8), 1015–1047 (2005).
[CrossRef]

Biomed. Opt. Express

Biophys. J.

D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92(2), 603–612 (2007).
[CrossRef] [PubMed]

Exp. Cell Res.

U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res.263(1), 88–97 (2001).
[CrossRef] [PubMed]

Exp. Dermatol.

R. Lazova and J. M. Pawelek, “Why do melanomas get so dark?” Exp. Dermatol.18(11), 934–938 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

K. Ekvall, P. van der Meulen, C. Dhollande, L.-E. Berg, S. Pommeret, R. Naskrecki, and J.-C. Mialocq, “Cross phase modulation artifact in liquid phase transient absorption spectroscopy,” J. Appl. Phys.87(5), 2340 (2000).
[CrossRef]

J. Biomed. Opt.

D. Fu, T. E. Matthews, T. Ye, I. R. Piletic, and W. S. Warren, “Label-free in vivo optical imaging of microvasculature and oxygenation level,” J. Biomed. Opt.13(4), 040503 (2008).
[CrossRef] [PubMed]

J. Nonlinear Opt. Phys. Mater.

P. Chapple, J. Staromlynska, J. Hermann, T. Mckay, and R. McDuff, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater.6(3), 251–294 (1997).
[CrossRef]

J. Phys. Chem. A

I. R. Piletic, T. E. Matthews, and W. S. Warren, “Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins,” J. Phys. Chem. A114(43), 11483–11491 (2010).
[CrossRef] [PubMed]

Opt. Commun.

E. T. J. Nibbering, M. A. Franco, B. S. Prade, G. Grillon, C. Le Blanc, and A. Mysyrowicz, “Measurement of the nonlinear refractive index of transparent materials by spectral analysis after nonlinear propagation,” Opt. Commun.119(5-6), 479–484 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y. Cao, and M. Oldham, “Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing,” Phys. Med. Biol.52(8), 2035–2054 (2007).
[CrossRef] [PubMed]

Phys. Rev. A

G. P. Agrawal, P. L. Baldeck, and R. R. Alfano, “Temporal and spectral effects of cross-phase modulation on copropagating ultrashort pulses in optical fibers,” Phys. Rev. A40(9), 5063–5072 (1989).
[CrossRef] [PubMed]

Sci. Transl. Med.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med.3(71), 71ra15 (2011).
[CrossRef] [PubMed]

Science

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other

Reference [14] defined the TPA cross section with an extra factor of two that is divided out here for direct comparison to the value in Ref. [13].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The optical set-up for XPMSS imaging involves adding a shortpass filter to an existing pump-probe microscope. Optionally a balanced photodiode can be used to isolate nonlinear phase modulation from nonlinear absorption.

Fig. 2
Fig. 2

(a) Pump-probe delay scan of 5 mM R6G in methanol, single photodiode without the probe shortpass edge filter. (b) Scan of 30 mM R6G in methanol, single photodiode with the probe shortpass edge filter. (c) XPMSS delay scans of methanol and 30 mM R6G dissolved in methanol with balanced photodiode. Though R6G has a large nonlinear absorption cross section, the balanced photodiode robustly measures XPM spectral shift, rejecting amplitude modulation

Fig. 3
Fig. 3

XPM spectral shifting in a fresh onion epidermis with a 10x 0.25 NA objective. (a) Image at a single delay, −100 fs. (b) Delay scans for regions of interest in cytoplasm (blue curve) and cell wall (red curve); both exhibit spectral shifting characteristic of cross-phase modulation. (c) contrast enhanced by subtracting the images taken at the two delays with peak XPM spectral shifting response (at −100 fs and + 100 fs). (d) transmissivity image for comparison. Appx. 7 seconds per frame, 83 mW total power incident at sample.

Fig. 4
Fig. 4

Pigmented cell imaging. (a) Linear transmissivity image, obscured by scattering in the embedding paraffin wax. (b) Linear reflectance confocal image. (c) Pump-probe principal component image [2]. (d) Extracted XPMSS, using balanced photodiode. Images acquired with a 40x 0.8 NA water immersion objective, with 710 nm pump at 3.8 mW, 810 nm probe at 3.8 mW incident on the sample. Dwell time 48 μs/pixel; appx. 12 sec. per frame; 26 pump-probe delays acquired. Power reduced to 1.1 mW each for (c) to avoid saturating detection electronics.

Fig. 5
Fig. 5

Images of the dermo-epidermal junction in a melanoma biopsy. a) Pump-probe image showing uniform eumelanin content. b) Combined multiphoton autofluorescence and SHG (imaged with a single PMT). c) XPMSS dot product image. Images acquired with a 40x 0.8 NA water immersion objective, 5 mW 720 nm pump, 5 mW 810 nm probe, 49 delays, 4 frame averaging.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

φ(t)=[ n 0 + n 2,SPM I pr (t)+ n 2,XPM I pu (t) ] ω pr L c .
Δω= dφ dt = ω pr c L n 2,XPM ( d I pu dt ) t=τ .
ΔS= ω 0 I pr (ω)dω ω 0 I pr (ωΔω)dω = 0 Δω I pr (ω)dω = I 0 erf( t fwhm Δω 2 ln2 ).
( d I pu dt ) max = I 0 8ln2 e 1 t fwhm .

Metrics