Abstract

Several major lung pathologies are characterized by early modifications of the extracellular matrix (ECM) fibrillar collagen and elastin network. We report here the development of a nonlinear fiber-optic spectrometer, compatible with an endoscopic use, primarily intended for the recording of second-harmonic generation (SHG) signal of collagen and two-photon excited fluorescence (2PEF) of both collagen and elastin. Fiber dispersion is accurately compensated by the use of a specific grism-pair stretcher, allowing laser pulse temporal width around 70 fs and excitation wavelength tunability from 790 to 900 nm. This spectrometer was used to investigate the excitation wavelength dependence (from 800 to 870 nm) of SHG and 2PEF spectra originating from ex vivo human lung tissue samples. The results were compared with spectral responses of collagen gel and elastin powder reference samples and also with data obtained using standard nonlinear microspectroscopy. The excitation-wavelength-tunable nonlinear fiber-optic spectrometer presented in this study allows performing nonlinear spectroscopy of human lung tissue ECM through the elastin 2PEF and the collagen SHG signals. This work opens the way to tunable excitation nonlinear endomicroscopy based on both distal scanning of a single optical fiber and proximal scanning of a fiber-optic bundle.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002).
    [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
    [CrossRef] [PubMed]
  3. S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express14(17), 7810–7820 (2006).
    [CrossRef] [PubMed]
  4. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
    [CrossRef] [PubMed]
  5. D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
    [CrossRef] [PubMed]
  6. L. Jay, A. Brocas, K. Singh, J.-C. Kieffer, I. Brunette, and T. Ozaki, “Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy,” Opt. Express16(21), 16284–16293 (2008).
    [CrossRef] [PubMed]
  7. M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007).
    [CrossRef] [PubMed]
  8. J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
    [CrossRef] [PubMed]
  9. F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
    [CrossRef] [PubMed]
  10. S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
    [CrossRef] [PubMed]
  11. A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
    [CrossRef] [PubMed]
  12. C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
    [CrossRef] [PubMed]
  13. T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.171(2), 189–196 (2010).
    [CrossRef] [PubMed]
  14. T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.169(1), 36–44 (2010).
    [CrossRef] [PubMed]
  15. L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
    [CrossRef] [PubMed]
  16. L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
    [CrossRef] [PubMed]
  17. B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
    [CrossRef] [PubMed]
  18. F. Jean, G. Bourg-Heckly, and B. Viellerobe, “Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis,” Opt. Express15(7), 4008–4017 (2007).
    [CrossRef] [PubMed]
  19. C. Lefort, T. Mansuryan, F. Louradour, and A. Barthélémy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett.36(2), 292–294 (2011).
    [CrossRef] [PubMed]
  20. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009).
    [CrossRef] [PubMed]
  21. M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
    [CrossRef]
  22. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
    [CrossRef] [PubMed]
  23. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010).
    [CrossRef] [PubMed]
  24. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handled two-photon fluorescence microendoscope with a 475 µm × 475 µm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008).
    [CrossRef] [PubMed]
  25. S. W. Clark, F. O. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett.26(17), 1320–1322 (2001).
    [CrossRef] [PubMed]
  26. T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express17(3), 1240–1247 (2009).
    [CrossRef] [PubMed]
  27. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett.9(5), 150–152 (1984).
    [CrossRef] [PubMed]
  28. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron.5(9), 454–458 (1969).
    [CrossRef]
  29. P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
    [CrossRef]
  30. E. A. Gibson, D. M. Gaudiosi, H. C. Kapteyn, R. Jimenez, S. Kane, R. Huff, C. Durfee, and J. Squier, “Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses,” Opt. Lett.31(22), 3363–3365 (2006).
    [CrossRef] [PubMed]
  31. A. Buettner, U. Buenting, D. Wandt, J. Neumann, and D. Kracht, “Ultrafast double-slab regenerative amplifier with combined gain spectra and intracavity dispersion compensation,” Opt. Express18(21), 21973–21980 (2010).
    [CrossRef] [PubMed]
  32. F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
    [CrossRef] [PubMed]
  33. N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
    [CrossRef]
  34. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
    [CrossRef] [PubMed]
  35. D. P. Thornhill, “Separation of a series of chromophores and fluorophores present in elastin,” Biochem. J.147(2), 215–219 (1975).
    [PubMed]
  36. A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004).
    [CrossRef] [PubMed]
  37. J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
    [CrossRef]
  38. L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
    [CrossRef] [PubMed]
  39. T. Gabrecht, S. Andrejevic-Blant, and G. Wagnières, “Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation,” Photochem. Photobiol.83(2), 450–459 (2007).
    [CrossRef] [PubMed]

2011 (3)

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
[CrossRef] [PubMed]

C. Lefort, T. Mansuryan, F. Louradour, and A. Barthélémy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett.36(2), 292–294 (2011).
[CrossRef] [PubMed]

2010 (6)

H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010).
[CrossRef] [PubMed]

A. Buettner, U. Buenting, D. Wandt, J. Neumann, and D. Kracht, “Ultrafast double-slab regenerative amplifier with combined gain spectra and intracavity dispersion compensation,” Opt. Express18(21), 21973–21980 (2010).
[CrossRef] [PubMed]

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.171(2), 189–196 (2010).
[CrossRef] [PubMed]

T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.169(1), 36–44 (2010).
[CrossRef] [PubMed]

2009 (5)

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express17(3), 1240–1247 (2009).
[CrossRef] [PubMed]

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009).
[CrossRef] [PubMed]

2008 (4)

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handled two-photon fluorescence microendoscope with a 475 µm × 475 µm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008).
[CrossRef] [PubMed]

L. Jay, A. Brocas, K. Singh, J.-C. Kieffer, I. Brunette, and T. Ozaki, “Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy,” Opt. Express16(21), 16284–16293 (2008).
[CrossRef] [PubMed]

2007 (7)

F. Jean, G. Bourg-Heckly, and B. Viellerobe, “Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis,” Opt. Express15(7), 4008–4017 (2007).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

T. Gabrecht, S. Andrejevic-Blant, and G. Wagnières, “Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation,” Photochem. Photobiol.83(2), 450–459 (2007).
[CrossRef] [PubMed]

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002).
[CrossRef] [PubMed]

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

2001 (1)

1993 (2)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
[CrossRef]

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

1984 (1)

1975 (1)

D. P. Thornhill, “Separation of a series of chromophores and fluorophores present in elastin,” Biochem. J.147(2), 215–219 (1975).
[PubMed]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron.5(9), 454–458 (1969).
[CrossRef]

1968 (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Abraham, T.

T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.169(1), 36–44 (2010).
[CrossRef] [PubMed]

T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.171(2), 189–196 (2010).
[CrossRef] [PubMed]

Ahn, Y.-C.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

Alahyane, F.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Allen, J.

André, B.

B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
[CrossRef] [PubMed]

Andrejevic-Blant, S.

T. Gabrecht, S. Andrejevic-Blant, and G. Wagnières, “Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation,” Photochem. Photobiol.83(2), 450–459 (2007).
[CrossRef] [PubMed]

Anglo, A.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

Aptel, F.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Ayache, N.

B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
[CrossRef] [PubMed]

Bancelin, S.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Bao, H.

Barthélémy, A.

Beaurepaire, E.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

Belamie, E.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

Bloembergen, N.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Bourg Heckly, G.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

Bourg-Heckly, G.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

F. Jean, G. Bourg-Heckly, and B. Viellerobe, “Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis,” Opt. Express15(7), 4008–4017 (2007).
[CrossRef] [PubMed]

Boussioutas, A.

Brocas, A.

Brunette, I.

Buchner, A. M.

B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
[CrossRef] [PubMed]

Bückle, R.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

Buenting, U.

Buettner, A.

Carthy, J.

T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.169(1), 36–44 (2010).
[CrossRef] [PubMed]

Cavé, C.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

Chang, R. K.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Chen, J.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express14(17), 7810–7820 (2006).
[CrossRef] [PubMed]

Chen, R.

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

Chen, Z.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

Cheng, Z.

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Clark, S. W.

Crestani, B.

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

Crotti, C.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Davidson, P.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

Débarre, D.

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

Deloison, F.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Deniset-Besseau, A.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Dominique, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

Dong, C.-Y.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

Durfee, C.

Ehlers, A.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

Fabre, A.

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

Fork, R. L.

Gabrecht, T.

T. Gabrecht, S. Andrejevic-Blant, and G. Wagnières, “Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation,” Photochem. Photobiol.83(2), 450–459 (2007).
[CrossRef] [PubMed]

Galvan, J.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

Gaudiosi, D. M.

Gibson, E. A.

Giraud-Guille, M.-M.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

Gobeaux, F.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

Gordon, J. P.

Gu, M.

Hancewicz, T. M.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
[CrossRef] [PubMed]

Hernest, M.

Hofer, M.

Hogg, J.

T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.171(2), 189–196 (2010).
[CrossRef] [PubMed]

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

Hovhannisyan, V. A.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

Huff, R.

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Ilday, F. O.

Jay, L.

Jean, F.

Jeremy, R.

Jha, S. S.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Jiang, X.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

Jimenez, R.

Jung, W.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

Kaatz, M.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

Kane, S.

Kaplan, P. D.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
[CrossRef] [PubMed]

Kapteyn, H. C.

Kassab, G. S.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

Kieffer, J.-C.

König, K.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

Kowalczuk, L.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Kracht, D.

Lachkar, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

Lacy, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

Laiho, L. H.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
[CrossRef] [PubMed]

Le, T.

Lee, C. H.

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Lefort, C.

Legeais, J.-M.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Lemaire, S.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Leng, Y.

Li, F.-C.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

Li, X.

Lin, B.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

Lin, S. J.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

Lin, W.-C.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

Liu, Q.

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

Lotan, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

Louradour, F.

Lu, X.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

Luo, T.

Mansuryan, T.

Marchal-Somme, J.

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

Marciano, T.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Martin, J.-L.

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

Martinez, O. E.

McCormick, D.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

McManus, B.

T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.169(1), 36–44 (2010).
[CrossRef] [PubMed]

Moreno-Swirc, S.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

Mosser, G.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

Myakov, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

Neumann, J.

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

Olivier, N.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Ozaki, T.

Panine, P.

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

Pattie, R.

Pelet, S.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
[CrossRef] [PubMed]

Peltier, E.

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

Pena, A.-M.

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

Peyrot, D. A.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Plamann, K.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

Richards-Kortum, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

Riemann, I.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

Russell, S.

Salaün, M.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

Savoldelli, M.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Schanne-Klein, M.-C.

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

Schenkl, S.

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

Singh, K.

So, P. T.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

So, P. T. C.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
[CrossRef] [PubMed]

Sokolov, K.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

Squier, J.

Stingl, A.

Strupler, M.

Su, J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

Tang, S.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

Tempea, G.

Tharaux, P.-L.

Thiberville, L.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

Thornhill, D. P.

D. P. Thornhill, “Separation of a series of chromophores and fluorophores present in elastin,” Biochem. J.147(2), 215–219 (1975).
[PubMed]

Tournois, P.

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron.5(9), 454–458 (1969).
[CrossRef]

Tromberg, B. J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002).
[CrossRef] [PubMed]

Vance, R.

Vercauteren, T.

B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
[CrossRef] [PubMed]

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

Vever-Bizet, C.

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

Viellerobe, B.

Wagnières, G.

T. Gabrecht, S. Andrejevic-Blant, and G. Wagnières, “Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation,” Photochem. Photobiol.83(2), 450–459 (2007).
[CrossRef] [PubMed]

Wallace, M. B.

B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
[CrossRef] [PubMed]

Wandt, D.

Wang, C.-C.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Wise, F. W.

Wu, R.-J.

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

Wu, Y.

Xi, J.

Xie, S.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

Xie, T.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

Yeh, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002).
[CrossRef] [PubMed]

Yu, B.

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

Zeng, H.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

Zhao, J.

Zheng, L.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

Zhu, X.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

Zhuo, S.

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express14(17), 7810–7820 (2006).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Zou, D.

Zou, Q.

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

Zoumi, A.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002).
[CrossRef] [PubMed]

Am. J. Respir. Crit. Care Med. (1)

L. Thiberville, S. Moreno-Swirc, T. Vercauteren, E. Peltier, C. Cavé, and G. Bourg Heckly, “In vivo imaging of the bronchial wall microstructure using fibered confocal fluorescence microscopy,” Am. J. Respir. Crit. Care Med.175(1), 22–31 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett.63(8), 1017–1019 (1993).
[CrossRef]

Biochem. J. (1)

D. P. Thornhill, “Separation of a series of chromophores and fluorophores present in elastin,” Biochem. J.147(2), 215–219 (1975).
[PubMed]

Biophys. J. (1)

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, “Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy,” Biophys. J.87(4), 2778–2786 (2004).
[CrossRef] [PubMed]

Electron. Lett. (1)

P. Tournois, “New diffraction grating pair with very linear dispersion for laser pulse compression,” Electron. Lett.29(16), 1414–1415 (1993).
[CrossRef]

Eur. Respir. J. (1)

L. Thiberville, M. Salaün, S. Lachkar, S. Dominique, S. Moreno-Swirc, C. Vever-Bizet, and G. Bourg-Heckly, “Human in vivo fluorescence microimaging of the alveolar ducts and sacs during bronchoscopy,” Eur. Respir. J.33(5), 974–985 (2009).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron.5(9), 454–458 (1969).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

F. Aptel, N. Olivier, A. Deniset-Besseau, J.-M. Legeais, K. Plamann, M.-C. Schanne-Klein, and E. Beaurepaire, “Multimodal nonlinear imaging of the human cornea,” Invest. Ophthalmol. Vis. Sci.51(5), 2459–2465 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (6)

S. Zhuo, J. Chen, B. Yu, X. Jiang, T. Luo, Q. Liu, R. Chen, and S. Xie, “Nonlinear optical microscopy of the bronchus,” J. Biomed. Opt.13(5), 054024 (2008).
[CrossRef] [PubMed]

C.-C. Wang, F.-C. Li, R.-J. Wu, V. A. Hovhannisyan, W.-C. Lin, S. J. Lin, P. T. So, and C.-Y. Dong, “Differentiation of normal and cancerous lung tissues by multiphoton imaging,” J. Biomed. Opt.14(4), 044034 (2009).
[CrossRef] [PubMed]

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

J. Chen, S. Zhuo, X. Jiang, X. Zhu, L. Zheng, S. Xie, B. Lin, and H. Zeng, “Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease,” J. Biomed. Opt.16(5), 051305 (2011).
[CrossRef] [PubMed]

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt.10(2), 024016 (2005).
[CrossRef] [PubMed]

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt.7(1), 148–156 (2002).
[CrossRef] [PubMed]

J. Mol. Biol. (1)

F. Gobeaux, G. Mosser, A. Anglo, P. Panine, P. Davidson, M.-M. Giraud-Guille, and E. Belamie, “Fibrillogenesis in dense collagen solutions: a physicochemical study,” J. Mol. Biol.376(5), 1509–1522 (2008).
[CrossRef] [PubMed]

J. Refract. Surg. (1)

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

J. Struct. Biol. (2)

T. Abraham and J. Hogg, “Extracellular matrix remodeling of lung alveolar walls in three dimensional space identified using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.171(2), 189–196 (2010).
[CrossRef] [PubMed]

T. Abraham, J. Carthy, and B. McManus, “Collagen matrix remodeling in 3-dimensional cellular space resolved using second harmonic generation and multiphoton excitation fluorescence,” J. Struct. Biol.169(1), 36–44 (2010).
[CrossRef] [PubMed]

Med. Image Anal. (1)

B. André, T. Vercauteren, A. M. Buchner, M. B. Wallace, and N. Ayache, “A smart atlas for endomicroscopy using automated video retrieval,” Med. Image Anal.15(4), 460–476 (2011).
[CrossRef] [PubMed]

Microsc. Res. Tech. (2)

A.-M. Pena, A. Fabre, D. Débarre, J. Marchal-Somme, B. Crestani, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Three-dimensional investigation and scoring of extracellular matrix remodeling during lung fibrosis using multiphoton microscopy,” Microsc. Res. Tech.70(2), 162–170 (2007).
[CrossRef] [PubMed]

K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007).
[CrossRef] [PubMed]

New J. Phys. (1)

J. Chen, S. Zhuo, R. Chen, X. Jiang, S. Xie, and Q. Zou, “Depth-resolved spectral imaging of rabbit oesophageal tissue based two-photon excited fluorescence and second-harmonic generation,” New J. Phys.9(7), 212 (2007).
[CrossRef]

Opt. Express (8)

S. Zhuo, J. Chen, T. Luo, D. Zou, and J. Zhao, “Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combination of multichannel mode and Lambda mode,” Opt. Express14(17), 7810–7820 (2006).
[CrossRef] [PubMed]

F. Jean, G. Bourg-Heckly, and B. Viellerobe, “Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis,” Opt. Express15(7), 4008–4017 (2007).
[CrossRef] [PubMed]

M. Strupler, A.-M. Pena, M. Hernest, P.-L. Tharaux, J.-L. Martin, E. Beaurepaire, and M.-C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express15(7), 4054–4065 (2007).
[CrossRef] [PubMed]

L. Jay, A. Brocas, K. Singh, J.-C. Kieffer, I. Brunette, and T. Ozaki, “Determination of porcine corneal layers with high spatial resolution by simultaneous second and third harmonic generation microscopy,” Opt. Express16(21), 16284–16293 (2008).
[CrossRef] [PubMed]

T. Le, G. Tempea, Z. Cheng, M. Hofer, and A. Stingl, “Routes to fiber delivery of ultra-short laser pulses in the 25 fs regime,” Opt. Express17(3), 1240–1247 (2009).
[CrossRef] [PubMed]

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009).
[CrossRef] [PubMed]

H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express18(2), 1255–1260 (2010).
[CrossRef] [PubMed]

A. Buettner, U. Buenting, D. Wandt, J. Neumann, and D. Kracht, “Ultrafast double-slab regenerative amplifier with combined gain spectra and intracavity dispersion compensation,” Opt. Express18(21), 21973–21980 (2010).
[CrossRef] [PubMed]

Opt. Lett. (5)

Photochem. Photobiol. (1)

T. Gabrecht, S. Andrejevic-Blant, and G. Wagnières, “Blue-violet excited autofluorescence spectroscopy and imaging of normal and cancerous human bronchial tissue after formalin fixation,” Photochem. Photobiol.83(2), 450–459 (2007).
[CrossRef] [PubMed]

Phys. Rev. (1)

N. Bloembergen, R. K. Chang, S. S. Jha, and C. H. Lee, “Optical second-harmonic generation in reflection from media with inversion symmetry,” Phys. Rev.174(3), 813–822 (1968).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A.99(17), 11014–11019 (2002).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for fiber-optic spectroscopic measurements. (DM stands for dichroic mirror and SPF stands for shortwave pass filter.)

Fig. 2
Fig. 2

Experimental setup for microspectroscopic measurements. (DM stands for dichroic mirror and SPF stands for shortwave pass filter.)

Fig. 3
Fig. 3

(a) Background fluorescence spectra generated from the fiber in fiber-optic spectroscopic setup as a function of excitation wavelength; (b) closer view of the specrtal range containing a SHG signal; (c) background fluorescence signal at 850 nm excitation wavelength (green) and a typical bronchus emission spectrum without background substraction (black) and with background substraction (red). 770 nm excited fiber fluorescence signal prohibites the use of this wavelength. 850 nm excited SHG signal fiber emission is negligeable compared to a typical tissular emission spectrum.

Fig. 4
Fig. 4

(a) Relationship between output and input carrier wavelengths through the grisms line based precompensation system, (b) laser pulses duration at the distal end of the probe fiber as a function of the output laser wavelength using sech2 approximation.

Fig. 5
Fig. 5

Averaged 2PEF (left) and SHG signals (right) at ~1.8 × 1011 W.cm−2 as a function of illumination duration. Each point is the average of 3 measurements. No 2PEF emission was observed for collagen sample at 850 nm excitation.

Fig. 6
Fig. 6

Typical emission spectra of collagen gel sample at various excitation wavelengths obtained in microspectroscopy. (a) Spectra are normalized to the maximum 2PEF emission of the most intense spectrum (here at 750 nm excitation wavelength), (b) spectra are normalized with respect to 450 nm.

Fig. 7
Fig. 7

Typical emission spectra of elastin powder samples at various excitation wavelengths obtained in microspectroscopy. (a) Spectra are normalized to the maximum 2PEF emission of the most intense spectrum (here at 770 nm excitation wavelength), (b) spectra are normalized with respect to 515 nm.

Fig. 8
Fig. 8

Typical emission spectra obtained for various excitation wavelengths using fiber-optic spectroscopy: bronchus (a) raw data and (b) normalized results with respect to the highest 2PEF signal, and alveoli (c) raw data and (d) normalized results with respect to the highest 2PEF signal.

Fig. 9
Fig. 9

Typical emission spectra obtained for various excitation wavelengths using microspectroscopy: (a) bronchus and (b) lung alveoli normalized results with respect to the highest 2PEF signal.

Fig. 10
Fig. 10

Ratio of the fluorescence intensity at 450 nm vs. that at 525 nm, as a function of the excitation wavelength for collagen, elastin, and lung tissue sample. (Above 800 nm, 2PEF is not observed from the collagen sample.)

Fig. 11
Fig. 11

2PEF and SHG spectra obtained using fiber-optic spectroscopy (FS) versus microspectroscopy (MS) configuration, originating from lung alveoli (black curve, FS; red curve, MS), bronchus (green curve, FS; blue curve, MS), and elastin powder (cyan curve, MS), at various excitation wavelengths.

Fig. 12
Fig. 12

SHG (green) and 2PEF (red) images from bronchus under 800 nm excitation wavelength from distal sampling fiber imaging system. Left image is the combination of both signals.

Metrics