Abstract

We have designed, fabricated, and tested a nanoparticle-embedded phantom (NEP) incorporated into a model eye in order to characterize the point spread function (PSF) of retinal optical coherence tomography (OCT) devices in three dimensions under realistic imaging conditions. The NEP comprises a sparse distribution of highly backscattering silica-gold nanoshells embedded in a transparent UV-curing epoxy. The commercially-available model eye replicates the key optical structures and focusing power of the human eye. We imaged the model eye-NEP combination with a research-grade spectral domain OCT system designed for in vivo retinal imaging and quantified the lateral and axial PSF dimensions across the field of view in the OCT images. We also imaged the model eye-NEP in a clinical OCT system. Subtle features in the PSF and its dimensions were consistent with independent measurements of lateral and axial resolution. This model eye-based phantom can provide retinal OCT device developers and users a means to rapidly, objectively, and consistently assess the PSF, a fundamental imaging performance metric.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
    [CrossRef]
  2. R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE7567, 756702, 756702-7 (2010).
    [CrossRef]
  3. IEC International Standard 62464–1:2007, “Magnetic resonance equipment for medical imaging—part 1: determination of essential image quality parameters” (International Electrotechnical Commission, Geneva, Switzerland, 2007).
  4. IEC International Standard 61391–1:2006, “Ultrasonics—Pulse-echo scanners—part 1: techniques for calibrating spatial measurement systems and measurement of system point-spread function response” (International Electrotechnical Commission, Geneva, Switzerland, 2006).
  5. ISO/IEC International Standard 9919:2005(E), “Medical electrical equipment—particular requirements for the basic safety and essential performance of pulse oximeter equipment for medical use” (International Organization for Standardization, Geneva, Switzerland, 2005).
  6. ISO International Standard 8600–5:2005, “Optics and photonics—medical endoscopes and endotherapy devices—part 5: determination of optical resolution of rigid endoscopes with optics” (International Organization for Standardization, Geneva, Switzerland, 2005).
  7. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
    [CrossRef]
  8. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
    [CrossRef] [PubMed]
  9. P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol.56(9), 2855–2871 (2011).
    [CrossRef] [PubMed]
  10. A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
    [CrossRef] [PubMed]
  11. A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
    [CrossRef] [PubMed]
  12. P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
    [CrossRef]
  13. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
    [CrossRef] [PubMed]
  14. P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
    [CrossRef]
  15. P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011).
    [CrossRef] [PubMed]
  16. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett.32(11), 1441–1443 (2007).
    [CrossRef] [PubMed]
  17. T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett.35(10), 1683–1685 (2010).
    [CrossRef] [PubMed]
  18. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
    [CrossRef] [PubMed]
  19. R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
    [CrossRef]
  20. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
    [CrossRef] [PubMed]
  21. S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
    [CrossRef] [PubMed]

2011 (3)

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol.56(9), 2855–2871 (2011).
[CrossRef] [PubMed]

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011).
[CrossRef] [PubMed]

2010 (6)

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE7567, 756702, 756702-7 (2010).
[CrossRef]

T. S. Ralston, S. G. Adie, D. L. Marks, S. A. Boppart, and P. S. Carney, “Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography,” Opt. Lett.35(10), 1683–1685 (2010).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
[CrossRef]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

2008 (3)

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
[CrossRef]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

2007 (2)

B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, “Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy,” Opt. Lett.32(11), 1441–1443 (2007).
[CrossRef] [PubMed]

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

2006 (1)

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

2003 (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

1999 (1)

Aalders, M. C.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

Adie, S. G.

Agrawal, A.

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
[CrossRef]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Barnaby, A. M.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Barton, J. K.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Beaumont, A.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Bigelow, C. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Boppart, S. A.

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Carney, P. S.

Chakrabarti, K.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
[CrossRef]

Davis, B. J.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Drexler, W.

Drezek, R.

Drezek, R. A.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

Ferguson, R. A.

Ferguson, R. D.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fuller, A. R.

R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
[CrossRef]

Fulton, A. B.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Gavrielides, M. A.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
[CrossRef]

Gilani, N.

Grimwood, A.

Hamann, B.

R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
[CrossRef]

Hammer, D. X.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Hart, C.

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Huang, S.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Iftimia, N. V.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Ippen, E. P.

Kärtner, F. X.

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Lee, M. H.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Li, X. D.

Lu, J. R.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Marks, D. L.

Morgner, U.

Nordstrom, R. J.

R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE7567, 756702, 756702-7 (2010).
[CrossRef]

Pfefer, J.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
[CrossRef]

Pfefer, T. J.

A. Agrawal, T. J. Pfefer, N. Gilani, and R. Drezek, “Three-dimensional characterization of optical coherence tomography point spread functions with a nanoparticle-embedded phantom,” Opt. Lett.35(13), 2269–2271 (2010).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Pitris, C.

Ralston, T. S.

Rasakanthan, J.

Rogers, S. S.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Rowe, T. S.

R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
[CrossRef]

Smith, G. N.

Sugden, K.

Tedaldi, M.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Tomlins, P. H.

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol.56(9), 2855–2871 (2011).
[CrossRef] [PubMed]

P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011).
[CrossRef] [PubMed]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Ustun, T. E.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Waigh, T. A.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Wei Haw Lin, A.

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Weininger, S.

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
[CrossRef]

Werner, J. S.

R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
[CrossRef]

Woolliams, P.

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

Woolliams, P. D.

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol.56(9), 2855–2871 (2011).
[CrossRef] [PubMed]

P. H. Tomlins, G. N. Smith, P. D. Woolliams, J. Rasakanthan, and K. Sugden, “Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts,” Biomed. Opt. Express2(5), 1319–1327 (2011).
[CrossRef] [PubMed]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt.49(11), 2014–2021 (2010).
[CrossRef] [PubMed]

Zawadzki, R. J.

R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
[CrossRef]

Zhao, X.

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.9(2), 227–233 (2003).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci.49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. Wei Haw Lin, M. H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, “Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells,” J. Biomed. Opt.11(4), 041121 (2006).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol.22(6), 065502 (2011).
[CrossRef]

Opt. Lett. (4)

Phys. Biol. (1)

S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, “Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight,” Phys. Biol.4(3), 220–227 (2007).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol.56(9), 2855–2871 (2011).
[CrossRef] [PubMed]

Proc. SPIE (4)

P. H. Tomlins, P. Woolliams, M. Tedaldi, A. Beaumont, and C. Hart, “Measurement of the three-dimensional point-spread function in an optical coherence tomography imaging system,” Proc. SPIE6847, 68472Q, 68472Q-8 (2008).
[CrossRef]

A. Agrawal, M. A. Gavrielides, S. Weininger, K. Chakrabarti, and J. Pfefer, “Regulatory perspectives and research activities at the FDA on the use of phantoms with in vivo diagnostic devices,” Proc. SPIE6870, 687005, 687005-8 (2008).
[CrossRef]

R. J. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE7567, 756702, 756702-7 (2010).
[CrossRef]

R. J. Zawadzki, T. S. Rowe, A. R. Fuller, B. Hamann, and J. S. Werner, “Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology,” Proc. SPIE7550, 75502F, 75502F-7 (2010).
[CrossRef]

Other (4)

IEC International Standard 62464–1:2007, “Magnetic resonance equipment for medical imaging—part 1: determination of essential image quality parameters” (International Electrotechnical Commission, Geneva, Switzerland, 2007).

IEC International Standard 61391–1:2006, “Ultrasonics—Pulse-echo scanners—part 1: techniques for calibrating spatial measurement systems and measurement of system point-spread function response” (International Electrotechnical Commission, Geneva, Switzerland, 2006).

ISO/IEC International Standard 9919:2005(E), “Medical electrical equipment—particular requirements for the basic safety and essential performance of pulse oximeter equipment for medical use” (International Organization for Standardization, Geneva, Switzerland, 2005).

ISO International Standard 8600–5:2005, “Optics and photonics—medical endoscopes and endotherapy devices—part 5: determination of optical resolution of rigid endoscopes with optics” (International Organization for Standardization, Geneva, Switzerland, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption spectra of polymers used in NEPs (silicone: previous NEP, epoxy: current NEP). Water absorption is shown as a reference.

Fig. 2
Fig. 2

(a) Fabricated NEP in Delrin mold. (b) Model eye. Scale bar is 5 mm.

Fig. 3
Fig. 3

(a) Engineering drawing and (b) schematic of the model eye.

Fig. 4
Fig. 4

(a) Representative B-scan and (b) 3D rendering of a B-scan stack acquired from a 0.5 mm X × 0.1 mm Y rectangular surface area of the NEP. Color scale is intensity in arbitrary units.

Fig. 5
Fig. 5

NEP (parts a-c) and beam profiler (parts d-f) images of the lateral PSF. Images from individual nanoshells in the NEP located (a, d) ~200 μm optical depth above the focal point, (b, e) at the focal point, and (c, f) ~200 μm optical depth below the focal point. All images are 23 × 23 μm. Color map represents the relative intensity within each image.

Fig. 6
Fig. 6

FWHM dimensions of the lateral PSF versus depth: (a) X dimension, (b) Y dimension.

Fig. 7
Fig. 7

Maps showing X and Z dependence of (a) X and (b) Y lateral PSF widths. Color map scale is μm.

Fig. 8
Fig. 8

FWHM of axial PSF versus depth.

Fig. 9
Fig. 9

Surface plots of (a) an example of a lateral PSF and (b) Gaussian fit to this lateral PSF.

Fig. 10
Fig. 10

Lateral and axial PSF widths as a function of (a) depth and (b) X position. Solid lines represent polynomial fits to the data.

Metrics