Abstract

Visualization and correct assessment of alveolar volume via intact lung imaging is important to study and assess respiratory mechanics. Optical Coherence Tomography (OCT), a real-time imaging technique based on near-infrared interferometry, can image several layers of distal alveoli in intact, ex vivo lung tissue. However optical effects associated with heterogeneity of lung tissue, including the refraction caused by air-tissue interfaces along alveoli and duct walls, and changes in speed of light as it travels through the tissue, result in inaccurate measurement of alveolar volume. Experimentally such errors have been difficult to analyze because of lack of ’ground truth,’ as the lung has a unique microstructure of liquid-coated thin walls surrounding relatively large airspaces, which is difficult to model with cellular foams. In addition, both lung and foams contain airspaces of highly irregular shape, further complicating quantitative measurement of optical artifacts and correction. To address this we have adapted the Bragg-Nye bubble raft, a crystalline two-dimensional arrangement of elements similar in geometry to alveoli (up to several hundred μm in diameter with thin walls) as an inflated lung phantom in order to understand, analyze and correct these errors. By applying exact optical ray tracing on OCT images of the bubble raft, the errors are predicted and corrected. The results are validated by imaging the bubble raft with OCT from one edge and with a charged coupled device (CCD) camera in transillumination from top, providing ground truth for the OCT.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Greaves, J. Hildebrandt, and F. G Hoppin, “Micromechanics of the lung,” Comprehensive Physiol.2011, 217–231 (2011).
  2. K.F. Udobi, E. Childs, and K. Touijer, “Acute respiratory distress syndrome,” Am. Family Physician, 67, 315–322 (2003).
  3. D. Dreyfuss and G. Saumon, “Ventilator-induced lung injury: lessons from experimental studies,” Respir. Crit. Care Med.157, 294–323 (1998).
  4. D. E. O’Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med165(5), 770–777 (2001).
  5. D. Carney, J. DiRocco, and G. Nieman, “Dynamic alveolar mechanics and ventilator-induced lung injury,” Crit. Care Med.33, S122–S128 (2005).
    [CrossRef] [PubMed]
  6. A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
    [CrossRef] [PubMed]
  7. A. Bashkatov, E. Genina, and V. Tuchin, “Tissue optical properties,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 67–100.
    [CrossRef]
  8. W. C. Warger, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal microscopy,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 517–542.
  9. H. Choi, J. Cha, and P. So, “Nonlinear optical microscopy for biology and medicine,” in in Handbook of Biomedical Optics (CRC Press, 2011), pp. 561–588.
    [CrossRef]
  10. F. E. Ben-Isaac and D. H. Simmons, “Flexible fiberoptic pleuroscopy: pleural and lung biopsy,” CHEST67(5), 573–576.
    [PubMed]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  12. A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
    [CrossRef] [PubMed]
  13. S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).
  14. N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
    [CrossRef]
  15. A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
    [CrossRef] [PubMed]
  16. M. R. Silva, H. T. Shen, A. Marzban, and A. Gouldstone, “Instrumented indentation of lung reveals significant short term alteration in mechanical behavior with 100 percent oxygen,” Healthcare Eng.1, 415–434 (2010).
    [CrossRef]
  17. M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
    [CrossRef]
  18. S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
    [CrossRef]
  19. M. Chen, Y. C. Yortsos, and W. R. Rossen, “Pore-network study of the mechanisms of foam generation in porous media,” X. Phys. Rev. E73, 036304 (2006).
    [CrossRef]
  20. A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
    [CrossRef]
  21. L. Bragg and J. F. Nye, “A dynamical model of a crystal structure,” Proc. R. Soc. Lond. A190, 474–481 (1947),
    [CrossRef]
  22. F. N. Golabchi, D. H. Brooks, A. Gouldstone, and C. A Dimarzio, “Refractive effects on optical measurement of alveolar volume: a 2-D ray tracing approach,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society, (IEEE, 2011), pp. 7771–7774.
  23. D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE7570, 75700I (2010).
    [CrossRef]
  24. T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
    [CrossRef]

2011 (3)

I. A. Greaves, J. Hildebrandt, and F. G Hoppin, “Micromechanics of the lung,” Comprehensive Physiol.2011, 217–231 (2011).

A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
[CrossRef] [PubMed]

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

2010 (2)

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE7570, 75700I (2010).
[CrossRef]

M. R. Silva, H. T. Shen, A. Marzban, and A. Gouldstone, “Instrumented indentation of lung reveals significant short term alteration in mechanical behavior with 100 percent oxygen,” Healthcare Eng.1, 415–434 (2010).
[CrossRef]

2009 (3)

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
[CrossRef]

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).

2007 (1)

A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
[CrossRef]

2006 (2)

M. Chen, Y. C. Yortsos, and W. R. Rossen, “Pore-network study of the mechanisms of foam generation in porous media,” X. Phys. Rev. E73, 036304 (2006).
[CrossRef]

A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
[CrossRef] [PubMed]

2005 (2)

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

D. Carney, J. DiRocco, and G. Nieman, “Dynamic alveolar mechanics and ventilator-induced lung injury,” Crit. Care Med.33, S122–S128 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
[CrossRef] [PubMed]

2003 (1)

K.F. Udobi, E. Childs, and K. Touijer, “Acute respiratory distress syndrome,” Am. Family Physician, 67, 315–322 (2003).

2001 (1)

D. E. O’Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med165(5), 770–777 (2001).

1998 (1)

D. Dreyfuss and G. Saumon, “Ventilator-induced lung injury: lessons from experimental studies,” Respir. Crit. Care Med.157, 294–323 (1998).

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

1947 (1)

L. Bragg and J. F. Nye, “A dynamical model of a crystal structure,” Proc. R. Soc. Lond. A190, 474–481 (1947),
[CrossRef]

Bashkatov, A.

A. Bashkatov, E. Genina, and V. Tuchin, “Tissue optical properties,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 67–100.
[CrossRef]

Ben-Isaac, F. E.

F. E. Ben-Isaac and D. H. Simmons, “Flexible fiberoptic pleuroscopy: pleural and lung biopsy,” CHEST67(5), 573–576.
[PubMed]

Bragg, L.

L. Bragg and J. F. Nye, “A dynamical model of a crystal structure,” Proc. R. Soc. Lond. A190, 474–481 (1947),
[CrossRef]

Brenner, M.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Brooks, D. H.

F. N. Golabchi, D. H. Brooks, A. Gouldstone, and C. A Dimarzio, “Refractive effects on optical measurement of alveolar volume: a 2-D ray tracing approach,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society, (IEEE, 2011), pp. 7771–7774.

Caner, N.

A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
[CrossRef] [PubMed]

Carney, D.

D. Carney, J. DiRocco, and G. Nieman, “Dynamic alveolar mechanics and ventilator-induced lung injury,” Crit. Care Med.33, S122–S128 (2005).
[CrossRef] [PubMed]

Cha, J.

H. Choi, J. Cha, and P. So, “Nonlinear optical microscopy for biology and medicine,” in in Handbook of Biomedical Optics (CRC Press, 2011), pp. 561–588.
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, M.

M. Chen, Y. C. Yortsos, and W. R. Rossen, “Pore-network study of the mechanisms of foam generation in porous media,” X. Phys. Rev. E73, 036304 (2006).
[CrossRef]

Chen, Z.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Childs, E.

K.F. Udobi, E. Childs, and K. Touijer, “Acute respiratory distress syndrome,” Am. Family Physician, 67, 315–322 (2003).

Choi, H.

H. Choi, J. Cha, and P. So, “Nonlinear optical microscopy for biology and medicine,” in in Handbook of Biomedical Optics (CRC Press, 2011), pp. 561–588.
[CrossRef]

Colt, H.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Daphtary, K.

A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
[CrossRef] [PubMed]

Delaney, G. W.

A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
[CrossRef]

Dimarzio, C. A

F. N. Golabchi, D. H. Brooks, A. Gouldstone, and C. A Dimarzio, “Refractive effects on optical measurement of alveolar volume: a 2-D ray tracing approach,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society, (IEEE, 2011), pp. 7771–7774.

Dimarzio, C. A.

A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
[CrossRef] [PubMed]

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE7570, 75700I (2010).
[CrossRef]

W. C. Warger, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal microscopy,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 517–542.

DiRocco, J.

D. Carney, J. DiRocco, and G. Nieman, “Dynamic alveolar mechanics and ventilator-induced lung injury,” Crit. Care Med.33, S122–S128 (2005).
[CrossRef] [PubMed]

Drenckhan, W.

A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
[CrossRef]

Dreyfuss, D.

D. Dreyfuss and G. Saumon, “Ventilator-induced lung injury: lessons from experimental studies,” Respir. Crit. Care Med.157, 294–323 (1998).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Genina, E.

A. Bashkatov, E. Genina, and V. Tuchin, “Tissue optical properties,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 67–100.
[CrossRef]

Golabchi, F. N.

F. N. Golabchi, D. H. Brooks, A. Gouldstone, and C. A Dimarzio, “Refractive effects on optical measurement of alveolar volume: a 2-D ray tracing approach,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society, (IEEE, 2011), pp. 7771–7774.

Gouldstone, A.

A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
[CrossRef] [PubMed]

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

M. R. Silva, H. T. Shen, A. Marzban, and A. Gouldstone, “Instrumented indentation of lung reveals significant short term alteration in mechanical behavior with 100 percent oxygen,” Healthcare Eng.1, 415–434 (2010).
[CrossRef]

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

F. N. Golabchi, D. H. Brooks, A. Gouldstone, and C. A Dimarzio, “Refractive effects on optical measurement of alveolar volume: a 2-D ray tracing approach,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society, (IEEE, 2011), pp. 7771–7774.

Greaves, I. A.

I. A. Greaves, J. Hildebrandt, and F. G Hoppin, “Micromechanics of the lung,” Comprehensive Physiol.2011, 217–231 (2011).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Guo, S.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Hanna, N.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Heidemann, S.

A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
[CrossRef] [PubMed]

Hildebrandt, J.

I. A. Greaves, J. Hildebrandt, and F. G Hoppin, “Micromechanics of the lung,” Comprehensive Physiol.2011, 217–231 (2011).

Hoppin, F. G

I. A. Greaves, J. Hildebrandt, and F. G Hoppin, “Micromechanics of the lung,” Comprehensive Physiol.2011, 217–231 (2011).

Hoyos, M.

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

HutzlerColloids, S.

A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
[CrossRef]

Jung, W.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Kaeli, D.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

Kalkhoran, S. M.

A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
[CrossRef] [PubMed]

Kim, J. H.

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

Knels, L.

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).

S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
[CrossRef]

A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
[CrossRef] [PubMed]

Koch, E.

S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
[CrossRef]

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).

A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
[CrossRef] [PubMed]

Koch, T.

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).

S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
[CrossRef]

A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
[CrossRef] [PubMed]

Krueger, A.

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).

Lieh-Lai, M.

A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Marzban, A.

M. R. Silva, H. T. Shen, A. Marzban, and A. Gouldstone, “Instrumented indentation of lung reveals significant short term alteration in mechanical behavior with 100 percent oxygen,” Healthcare Eng.1, 415–434 (2010).
[CrossRef]

Meert, K.

A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
[CrossRef] [PubMed]

Meissner, S.

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).

S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
[CrossRef]

Milliken, J.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Mukai, D.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Nieman, G.

D. Carney, J. DiRocco, and G. Nieman, “Dynamic alveolar mechanics and ventilator-induced lung injury,” Crit. Care Med.33, S122–S128 (2005).
[CrossRef] [PubMed]

Nye, J. F.

L. Bragg and J. F. Nye, “A dynamical model of a crystal structure,” Proc. R. Soc. Lond. A190, 474–481 (1947),
[CrossRef]

O’Donnell, D. E.

D. E. O’Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med165(5), 770–777 (2001).

Pan, Y.

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

Popp, A.

A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rajadhyaksha, M.

W. C. Warger, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal microscopy,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 517–542.

Reed, D. C.

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE7570, 75700I (2010).
[CrossRef]

Revill, S. M.

D. E. O’Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med165(5), 770–777 (2001).

Robinson, J. P.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

Rossen, W. R.

M. Chen, Y. C. Yortsos, and W. R. Rossen, “Pore-network study of the mechanisms of foam generation in porous media,” X. Phys. Rev. E73, 036304 (2006).
[CrossRef]

Saltzman, D.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Sarnaik, A.

A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
[CrossRef] [PubMed]

Sasse, S.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Saumon, G.

D. Dreyfuss and G. Saumon, “Ventilator-induced lung injury: lessons from experimental studies,” Respir. Crit. Care Med.157, 294–323 (1998).

Schnabel, C.

S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Shen, H. T.

M. R. Silva, H. T. Shen, A. Marzban, and A. Gouldstone, “Instrumented indentation of lung reveals significant short term alteration in mechanical behavior with 100 percent oxygen,” Healthcare Eng.1, 415–434 (2010).
[CrossRef]

Silva, M. R.

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

M. R. Silva, H. T. Shen, A. Marzban, and A. Gouldstone, “Instrumented indentation of lung reveals significant short term alteration in mechanical behavior with 100 percent oxygen,” Healthcare Eng.1, 415–434 (2010).
[CrossRef]

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

Simmons, D. H.

F. E. Ben-Isaac and D. H. Simmons, “Flexible fiberoptic pleuroscopy: pleural and lung biopsy,” CHEST67(5), 573–576.
[PubMed]

So, P.

H. Choi, J. Cha, and P. So, “Nonlinear optical microscopy for biology and medicine,” in in Handbook of Biomedical Optics (CRC Press, 2011), pp. 561–588.
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swedish, T. B.

A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
[CrossRef] [PubMed]

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

Touijer, K.

K.F. Udobi, E. Childs, and K. Touijer, “Acute respiratory distress syndrome,” Am. Family Physician, 67, 315–322 (2003).

Tuchin, V.

A. Bashkatov, E. Genina, and V. Tuchin, “Tissue optical properties,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 67–100.
[CrossRef]

Udobi, K.F.

K.F. Udobi, E. Childs, and K. Touijer, “Acute respiratory distress syndrome,” Am. Family Physician, 67, 315–322 (2003).

van der Net, A.

A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
[CrossRef]

Wang, Z.

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

Warger, W. C.

W. C. Warger, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal microscopy,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 517–542.

Weaire, D.

A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
[CrossRef]

Webb, K. A.

D. E. O’Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med165(5), 770–777 (2001).

Wendel, M.

A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
[CrossRef] [PubMed]

Yortsos, Y. C.

M. Chen, Y. C. Yortsos, and W. R. Rossen, “Pore-network study of the mechanisms of foam generation in porous media,” X. Phys. Rev. E73, 036304 (2006).
[CrossRef]

Yuan, Z.

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

Am. Family Physician (1)

K.F. Udobi, E. Childs, and K. Touijer, “Acute respiratory distress syndrome,” Am. Family Physician, 67, 315–322 (2003).

Am. J. Respir. Crit. Care Med (1)

D. E. O’Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” Am. J. Respir. Crit. Care Med165(5), 770–777 (2001).

CHEST (1)

F. E. Ben-Isaac and D. H. Simmons, “Flexible fiberoptic pleuroscopy: pleural and lung biopsy,” CHEST67(5), 573–576.
[PubMed]

Colloids Surfaces A: Physicochem. Eng. Aspects (1)

A. van der Net, G. W. Delaney, W. Drenckhan, D. Weaire, and S. HutzlerColloids, “Crystalline arrangements of microbubbles in monodisperse foams,” Colloids Surfaces A: Physicochem. Eng. Aspects309(1–3), 117–124 (2007).
[CrossRef]

Comprehensive Physiol. (1)

I. A. Greaves, J. Hildebrandt, and F. G Hoppin, “Micromechanics of the lung,” Comprehensive Physiol.2011, 217–231 (2011).

Crit. Care Med. (1)

D. Carney, J. DiRocco, and G. Nieman, “Dynamic alveolar mechanics and ventilator-induced lung injury,” Crit. Care Med.33, S122–S128 (2005).
[CrossRef] [PubMed]

Eu. Respir. J. (1)

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” Eu. Respir. J.14, 054020 (2009).

Healthcare Eng. (1)

M. R. Silva, H. T. Shen, A. Marzban, and A. Gouldstone, “Instrumented indentation of lung reveals significant short term alteration in mechanical behavior with 100 percent oxygen,” Healthcare Eng.1, 415–434 (2010).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

A. Gouldstone, N. Caner, T. B. Swedish, S. M. Kalkhoran, and C. A. Dimarzio, “Mechanical and optical dynamic model of lung,” IEEE Trans. Biomed. Eng.58, 3012–3015 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

S. Meissner, L. Knels, C. Schnabel, T. Koch, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14, 064037 (2009).
[CrossRef]

A. Popp, M. Wendel, L. Knels, T. Koch, and E. Koch, “Imaging of the three-dimensional alveolar structure and the alveolar mechanics of a ventilated and perfused isolated rabbit lung with Fourier domain optical coherence tomography,” J. Biomed. Opt.11, 014015 (2006).
[CrossRef] [PubMed]

J. Mater. Res. (1)

M. R. Silva, Z. Yuan, J. H. Kim, Z. Wang, M. Hoyos, Y. Pan, and A. Gouldstone, “Spherical indentation of lungs: experiments, modeling and sub-surface imaging,” J. Mater. Res.24, 1156–1166 (2009).
[CrossRef]

J. Thoracic Cardiovascular Surg. (1)

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thoracic Cardiovascular Surg.129, 615–622 (2005).
[CrossRef]

Pediatr. Crit. Care Med. (1)

A. Sarnaik, K. Daphtary, K. Meert, M. Lieh-Lai, and S. Heidemann, “Pressure-controlled ventilation in children with severe status asthmaticus,” Pediatr. Crit. Care Med.5(2), 133–138 (2004).
[CrossRef] [PubMed]

Proc. R. Soc. Lond. A (1)

L. Bragg and J. F. Nye, “A dynamical model of a crystal structure,” Proc. R. Soc. Lond. A190, 474–481 (1947),
[CrossRef]

Proc. SPIE (2)

D. C. Reed and C. A. DiMarzio, “Computational model of OCT in lung tissue,” Proc. SPIE7570, 75700I (2010).
[CrossRef]

T. B. Swedish, J. P. Robinson, M. R. Silva, A. Gouldstone, D. Kaeli, and C. A. DiMarzio, “Computational model of optical scattering by elsatin in lung,” Proc. SPIE7004, 79040H (2011),
[CrossRef]

Respir. Crit. Care Med. (1)

D. Dreyfuss and G. Saumon, “Ventilator-induced lung injury: lessons from experimental studies,” Respir. Crit. Care Med.157, 294–323 (1998).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

X. Phys. Rev. E (1)

M. Chen, Y. C. Yortsos, and W. R. Rossen, “Pore-network study of the mechanisms of foam generation in porous media,” X. Phys. Rev. E73, 036304 (2006).
[CrossRef]

Other (4)

A. Bashkatov, E. Genina, and V. Tuchin, “Tissue optical properties,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 67–100.
[CrossRef]

W. C. Warger, C. A. DiMarzio, and M. Rajadhyaksha, “Confocal microscopy,” in Handbook of Biomedical Optics (CRC Press, 2011), pp. 517–542.

H. Choi, J. Cha, and P. So, “Nonlinear optical microscopy for biology and medicine,” in in Handbook of Biomedical Optics (CRC Press, 2011), pp. 561–588.
[CrossRef]

F. N. Golabchi, D. H. Brooks, A. Gouldstone, and C. A Dimarzio, “Refractive effects on optical measurement of alveolar volume: a 2-D ray tracing approach,” in Proceedings of IEEE Conference on Engineering in Medicine and Biology Society, (IEEE, 2011), pp. 7771–7774.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

OCT image of inflated rat lung, showing several layers of alveoli in cross-section. Scale bar is 500μm [17]. © Materials Research Society 2009—reprinted with permission.

Fig. 2
Fig. 2

Illustration of the artifacts in OCT images caused by air/tissue interfaces. Upper panel: simulated OCT cross sections of a turbid agarose gel stick (left) and air bubble (right) surrounded by olive oil to demonstrate image generation for fluid and air-filled alveoli. OCT cross sections of the phantom measurements of (A)optical turbid agarose gel stick and (B) air bubble in olive oil.(C) OCT en-face image showing the artifacts caused by the air/tissue interfaces that result in pseudodoubled alveolar walls (white arrows). Image by Sven Meissner et al. (This figure is reproduced with permission from the Journal of Biomedical Optics and the authors [18].)

Fig. 3
Fig. 3

Experimental setup - a bubble raft on a glass cover slip was imaged on edge by OCT, and from above by CCD. The raft was illuminated from below by a green LED to improve contrast in the CCD. For the experiment in this paper, the raft is a single layer of bubbles approximately 250μm thick.

Fig. 4
Fig. 4

Bubble raft imaged (a) from above via CCD and (b) from the edge using OCT. Arrows show popped bubbles used for matching in registration. (c) OCT (red plane) and CCD (green plane) images overlaid, via rotation, translation and isotropic scaling.

Fig. 5
Fig. 5

(a) OCT image of a single bubble. Arrow points to ’double wall’ artifact. (b) CCD image of the same bubble, with surrounding bubbles visible. Images are scaled to same size. (c) Model showing refractive effects on a single bubble of air (white) in a medium with higher refractive index (grey). A light ray (black line) crossing the medium-air interface at (i) is normal to the interface, and is not refracted, impinging on the bottom surface at (iii). This is backscattered to i and no artifact occurs. The light ray (grey line) crossing at (ii) is refracted to impinge the bottom surface (grey dashed arc) at (iv), where it is backscattered to (ii). However, the OCT system interprets this as a ray parallel to the optical axis (grey dotted line), thus ”detecting” the bottom surface at (v). Rays refracted in this way lead to construction of the double wall (grey dotted arc.)

Fig. 6
Fig. 6

Illustration of forward (left panels) and inverse (right panels) ray tracing stages. (Note that the notation used in the legend corresponds to the equations in the text.) The top panels show OCT images of the bubble raft, while the bottom panels show those same images overlaid on the CCD camera image of the same portion of the raft. On all four images, the yellow dashed line shows the location of the OCT imager. The dashed cyan line along the top of the bubble shows the location of the top surface as determined from the OCT image (as described in text). The dashed green line shows the corrected top surface (obscured by the measured location in some cases). The dashed magenta line along the top surface indicates the extent over which rays refract into the bubble. For the forward ray tracing in the left planes (a) and (c), the dashed red curve shows the location of the bottom surface as measured by OCT imaging model (determined via forward ray tracing). The small cyan circle near the bottom of the bubble shows the locate of the manually selected location of the center of the bottom surface on the OCT image; the small green circle shows its location after applying the correction algorithm. The ellipse fit to the corrected top surface and a corrected central point on bottom surface is shown with a dotted blue line. On the right panels (b) and (d), the solid cyan shows the bottom as seen in the original OCT images, while the solid magenta curve shows the bottom surface after correction. The dashed blue ellipse on these panels shows the estimated bubble surface after correction with inverse ray tracing, determined by a fit to the corrected top and bottom surfaces.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

X 1 = X 1 Z 1 = Z 0 + ( Z 1 Z 0 ) / n
X 2 = r sin ( θ ) + X 1 Z 2 = r cos ( θ ) + Z 1

Metrics