Abstract

Visualizing retinal photocoagulation by real-time OCT measurements may considerably improve the understanding of thermally induced tissue changes and might enable a better reproducibility of the ocular laser treatment. High speed Doppler OCT with 860 frames per second imaged tissue changes in the fundus of enucleated porcine eyes during laser irradiation. Tissue motion, measured by Doppler OCT with nanometer resolution, was correlated with the temperature increase, which was measured non-invasively by optoacoustics. In enucleated eyes, the increase of the OCT signal near the retinal pigment epithelium (RPE) corresponded well to the macroscopically visible whitening of the tissue. At low irradiance, Doppler OCT revealed additionally a reversible thermal expansion of the retina. At higher irradiance additional movement due to irreversible tissue changes was observed. Measurements of the tissue expansion were also possible in vivo in a rabbit with submicrometer resolution when global tissue motion was compensated. Doppler OCT may be used for spatially resolved measurements of retinal temperature increases and thermally induced tissue changes. It can play an important role in understanding the mechanisms of photocoagulation and, eventually, lead to new strategies for retinal laser treatments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meyer-Schwinckerath, “Lichtkoagulationen,” Arch. Ophthalmol.156, 2–34 (1954).
  2. Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy. ETDRS report number 9,” Ophthalmology98, 766–785 (1991).
    [PubMed]
  3. Early Treatment Diabetic Retinopathy Study Research Group, “Photocoagulation for diabetic macular edema. early treatment diabetic retinopathy study report number 1,” Arch. Ophthalmol.103, 1796–1806 (1985).
    [PubMed]
  4. Branch Vein Occlusion Study Group, “Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. a randomized clinical trial,” Arch. Ophthalmol.104, 34–41 (1986).
  5. Branch Vein Occlusion Study Group, “Natural history and clinical management of central retinal vein occlusion,” Arch. Ophthalmol.115, 486–491 (1997).
    [PubMed]
  6. A. M. Shah, N. M. Bressler, and L. M. Jampol, “Does laser still have a role in the management of retinal vascular and neovascular diseases?” Am. J. Ophthalmol.152, 332–339.e1 (2011).
    [CrossRef] [PubMed]
  7. W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
    [PubMed]
  8. S. Y. Schmidt and R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium. regional variation and age-related reduction,” Invest. Ophthalmol. Vis. Sci.27, 1063–1067 (1986).
    [PubMed]
  9. J. K. Luttrull, D. C. Musch, and M. A. Mainster, “Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema,” Br. J. Ophthalmol.89, 74–80 (2005).
    [CrossRef]
  10. G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011).
    [CrossRef] [PubMed]
  11. J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994).
    [CrossRef]
  12. C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002).
    [CrossRef] [PubMed]
  13. K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
    [CrossRef]
  14. R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
    [PubMed]
  15. G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
    [CrossRef] [PubMed]
  16. J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006).
    [CrossRef] [PubMed]
  17. D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  18. L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009).
    [CrossRef] [PubMed]
  19. C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
    [CrossRef] [PubMed]
  20. J. F. Black, N. Wade, and J. K. Barton, “Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm,” Lasers Surg. Med.36, 155–165 (2005).
    [CrossRef] [PubMed]
  21. J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
    [CrossRef] [PubMed]
  22. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt.12, 020501 (2007).
    [CrossRef] [PubMed]
  23. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16, 4376–4393 (2008).
    [CrossRef] [PubMed]
  24. R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979).
    [CrossRef] [PubMed]
  25. R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds. (Plenum Press, New York, 1980), 77–97.
  26. D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).
  27. V.-P. Gabel, R. Birngruber, and F. Hillenkamp, Die Lichtabsorption im Augenhintergrund: Mikrospektralphotometrische Bestimmung der wellenabhängigen Lichtabsorption in Pigmentepithel und Chorioidea von Mensch, Rhesusaffe und Chinchillakaninchen, GSF-Bericht A (GSF, München, 1976).
    [PubMed]
  28. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
    [CrossRef] [PubMed]
  29. F. A. Duck, Physical Properties of tissue—a Comprehensive Reference Book (Academic, London, 1990).
    [PubMed]
  30. R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng.42, 828–839 (1995).
    [CrossRef] [PubMed]
  31. M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
    [CrossRef] [PubMed]
  32. B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15, 065002 (2010).
    [CrossRef]
  33. G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
    [CrossRef] [PubMed]
  34. H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).
  35. M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.
  36. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
    [CrossRef] [PubMed]
  37. J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
    [CrossRef]

2011 (3)

A. M. Shah, N. M. Bressler, and L. M. Jampol, “Does laser still have a role in the management of retinal vascular and neovascular diseases?” Am. J. Ophthalmol.152, 332–339.e1 (2011).
[CrossRef] [PubMed]

G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011).
[CrossRef] [PubMed]

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

2010 (1)

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15, 065002 (2010).
[CrossRef]

2009 (2)

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009).
[CrossRef] [PubMed]

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

2008 (2)

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16, 4376–4393 (2008).
[CrossRef] [PubMed]

2007 (2)

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt.12, 020501 (2007).
[CrossRef] [PubMed]

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

2006 (1)

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006).
[CrossRef] [PubMed]

2005 (3)

J. K. Luttrull, D. C. Musch, and M. A. Mainster, “Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema,” Br. J. Ophthalmol.89, 74–80 (2005).
[CrossRef]

J. F. Black, N. Wade, and J. K. Barton, “Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm,” Lasers Surg. Med.36, 155–165 (2005).
[CrossRef] [PubMed]

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

2004 (1)

G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
[CrossRef] [PubMed]

2002 (1)

C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002).
[CrossRef] [PubMed]

2001 (1)

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

2000 (1)

M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
[CrossRef] [PubMed]

1997 (1)

Branch Vein Occlusion Study Group, “Natural history and clinical management of central retinal vein occlusion,” Arch. Ophthalmol.115, 486–491 (1997).
[PubMed]

1996 (1)

D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).

1995 (2)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng.42, 828–839 (1995).
[CrossRef] [PubMed]

1994 (1)

J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994).
[CrossRef]

1991 (2)

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy. ETDRS report number 9,” Ophthalmology98, 766–785 (1991).
[PubMed]

1986 (2)

Branch Vein Occlusion Study Group, “Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. a randomized clinical trial,” Arch. Ophthalmol.104, 34–41 (1986).

S. Y. Schmidt and R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium. regional variation and age-related reduction,” Invest. Ophthalmol. Vis. Sci.27, 1063–1067 (1986).
[PubMed]

1985 (1)

Early Treatment Diabetic Retinopathy Study Research Group, “Photocoagulation for diabetic macular edema. early treatment diabetic retinopathy study report number 1,” Arch. Ophthalmol.103, 1796–1806 (1985).
[PubMed]

1979 (1)

R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979).
[CrossRef] [PubMed]

1962 (1)

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

1954 (1)

G. Meyer-Schwinckerath, “Lichtkoagulationen,” Arch. Ophthalmol.156, 2–34 (1954).

Acidereli, E.

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

Adler, D. C.

Alt, C.

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

Apiou-Sbirlea, G.

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

Baade, A.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Barton, J. K.

J. F. Black, N. Wade, and J. K. Barton, “Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm,” Lasers Surg. Med.36, 155–165 (2005).
[CrossRef] [PubMed]

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

Bever, M.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Birngruber, R.

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006).
[CrossRef] [PubMed]

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002).
[CrossRef] [PubMed]

J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994).
[CrossRef]

R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979).
[CrossRef] [PubMed]

R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds. (Plenum Press, New York, 1980), 77–97.

V.-P. Gabel, R. Birngruber, and F. Hillenkamp, Die Lichtabsorption im Augenhintergrund: Mikrospektralphotometrische Bestimmung der wellenabhängigen Lichtabsorption in Pigmentepithel und Chorioidea von Mensch, Rhesusaffe und Chinchillakaninchen, GSF-Bericht A (GSF, München, 1976).
[PubMed]

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Black, J. F.

J. F. Black, N. Wade, and J. K. Barton, “Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm,” Lasers Surg. Med.36, 155–165 (2005).
[CrossRef] [PubMed]

Böhringer, H. J.

H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).

Bouma, B. E.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt.12, 020501 (2007).
[CrossRef] [PubMed]

Bressler, N. M.

A. M. Shah, N. M. Bressler, and L. M. Jampol, “Does laser still have a role in the management of retinal vascular and neovascular diseases?” Am. J. Ophthalmol.152, 332–339.e1 (2011).
[CrossRef] [PubMed]

Brinkmann, R.

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006).
[CrossRef] [PubMed]

G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
[CrossRef] [PubMed]

C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002).
[CrossRef] [PubMed]

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Chan, G.

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Dark, M. L.

M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
[CrossRef] [PubMed]

de Belvis, V.

G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011).
[CrossRef] [PubMed]

Deleon-Ortega, J.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009).
[CrossRef] [PubMed]

Drechsel, E.

R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979).
[CrossRef] [PubMed]

Duck, F. A.

F. A. Duck, Physical Properties of tissue—a Comprehensive Reference Book (Academic, London, 1990).
[PubMed]

Ebbini, E. S.

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng.42, 828–839 (1995).
[CrossRef] [PubMed]

Ehlers, J. P.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

Elsner, H.

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006).
[CrossRef] [PubMed]

Farrell, R. A.

D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).

Farsiu, S.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

Feld, M. S.

M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
[CrossRef] [PubMed]

Ferguson, R.

J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994).
[CrossRef]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Framme, C.

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
[CrossRef] [PubMed]

C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002).
[CrossRef] [PubMed]

Freund, D. E.

D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).

Frish, M.

J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994).
[CrossRef]

Fujimoto, J. G.

D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16, 4376–4393 (2008).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gabel, V. P.

R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979).
[CrossRef] [PubMed]

Gabel, V.-P.

V.-P. Gabel, R. Birngruber, and F. Hillenkamp, Die Lichtabsorption im Augenhintergrund: Mikrospektralphotometrische Bestimmung der wellenabhängigen Lichtabsorption in Pigmentepithel und Chorioidea von Mensch, Rhesusaffe und Chinchillakaninchen, GSF-Bericht A (GSF, München, 1976).
[PubMed]

Galan, A.

G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011).
[CrossRef] [PubMed]

Geeraets, W. J.

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Geerling, G.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

Giese, A.

H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).

Girkin, C. A.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009).
[CrossRef] [PubMed]

Giudice, G. L.

G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grisanti, S.

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

Guerry, D.

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Ham, J.

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Herrmann, K.

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

Hillenkamp, F.

R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979).
[CrossRef] [PubMed]

V.-P. Gabel, R. Birngruber, and F. Hillenkamp, Die Lichtabsorption im Augenhintergrund: Mikrospektralphotometrische Bestimmung der wellenabhängigen Lichtabsorption in Pigmentepithel und Chorioidea von Mensch, Rhesusaffe und Chinchillakaninchen, GSF-Bericht A (GSF, München, 1976).
[PubMed]

Hoerauf, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, S. W.

Huber, R.

Hüttmann, G.

G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
[CrossRef] [PubMed]

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).

Inderfurth, J.

J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994).
[CrossRef]

Itzkan, I.

M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
[CrossRef] [PubMed]

Izatt, J. A.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

Jampol, L. M.

A. M. Shah, N. M. Bressler, and L. M. Jampol, “Does laser still have a role in the management of retinal vascular and neovascular diseases?” Am. J. Ophthalmol.152, 332–339.e1 (2011).
[CrossRef] [PubMed]

Kandulla, J.

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006).
[CrossRef] [PubMed]

Koinzer, S.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Kolios, M. C.

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15, 065002 (2010).
[CrossRef]

Krug, M.

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

Lankenau, E.

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).

Laqua, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Luft, S.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Luttrull, J. K.

J. K. Luttrull, D. C. Musch, and M. A. Mainster, “Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema,” Br. J. Ophthalmol.89, 74–80 (2005).
[CrossRef]

Mainster, M. A.

J. K. Luttrull, D. C. Musch, and M. A. Mainster, “Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema,” Br. J. Ophthalmol.89, 74–80 (2005).
[CrossRef]

Maldonado, R.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

McCally, R. L.

D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).

Meyer-Schwinckerath, G.

G. Meyer-Schwinckerath, “Lichtkoagulationen,” Arch. Ophthalmol.156, 2–34 (1954).

Miura, Y.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Müller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Müller, M.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

Musch, D. C.

J. K. Luttrull, D. C. Musch, and M. A. Mainster, “Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema,” Br. J. Ophthalmol.89, 74–80 (2005).
[CrossRef]

Oelckers, S.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

Oelkers, S.

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

Peisch, R. D.

S. Y. Schmidt and R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium. regional variation and age-related reduction,” Invest. Ophthalmol. Vis. Sci.27, 1063–1067 (1986).
[PubMed]

Perelman, L. T.

M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
[CrossRef] [PubMed]

Pfefer, T. J.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

Prahs, P.

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

Ptaszynski, L.

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Puliafito, C. A.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Regler, R.

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

Reusche, E.

H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Roider, J.

G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
[CrossRef] [PubMed]

C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002).
[CrossRef] [PubMed]

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Rollins, A.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

Sakata, L. M.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009).
[CrossRef] [PubMed]

Sakata, V.

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009).
[CrossRef] [PubMed]

Sandeau, J.

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

Schaffer, J. L.

M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
[CrossRef] [PubMed]

Schlott, K.

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

Schmidt, F. H.

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Schmidt, S. Y.

S. Y. Schmidt and R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium. regional variation and age-related reduction,” Invest. Ophthalmol. Vis. Sci.27, 1063–1067 (1986).
[PubMed]

Schüle, G.

G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

Seip, R.

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng.42, 828–839 (1995).
[CrossRef] [PubMed]

Shah, A. M.

A. M. Shah, N. M. Bressler, and L. M. Jampol, “Does laser still have a role in the management of retinal vascular and neovascular diseases?” Am. J. Ophthalmol.152, 332–339.e1 (2011).
[CrossRef] [PubMed]

Sliney, D. H.

D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).

Soroushian, B.

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15, 065002 (2010).
[CrossRef]

Stalljohann, J.

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

Stellmacher, F.

H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).

Steven, P.

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

Stinson, W. G.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

T., W.

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Tao, Y. K.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

Tavolato, M.

G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011).
[CrossRef] [PubMed]

Tearney, G. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt.12, 020501 (2007).
[CrossRef] [PubMed]

Theisen-Kunde, D.

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

Toth, C. A.

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt.12, 020501 (2007).
[CrossRef] [PubMed]

Wade, N.

J. F. Black, N. Wade, and J. K. Barton, “Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm,” Lasers Surg. Med.36, 155–165 (2005).
[CrossRef] [PubMed]

Walter, A.

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

Weber, B.

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

Westphal, V.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

Whelan, W. M.

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15, 065002 (2010).
[CrossRef]

Williams, R. C.

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Winter, C.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

Yazdanfar, S.

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

Acta Neurochir. (Wien) (1)

H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann, and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography,” Acta Neurochir. (Wien)151, 507–517; discussion 517 (2009).

Am. J. Ophthalmol. (1)

A. M. Shah, N. M. Bressler, and L. M. Jampol, “Does laser still have a role in the management of retinal vascular and neovascular diseases?” Am. J. Ophthalmol.152, 332–339.e1 (2011).
[CrossRef] [PubMed]

Arch. Ophthalmol. (5)

G. Meyer-Schwinckerath, “Lichtkoagulationen,” Arch. Ophthalmol.156, 2–34 (1954).

Early Treatment Diabetic Retinopathy Study Research Group, “Photocoagulation for diabetic macular edema. early treatment diabetic retinopathy study report number 1,” Arch. Ophthalmol.103, 1796–1806 (1985).
[PubMed]

Branch Vein Occlusion Study Group, “Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. a randomized clinical trial,” Arch. Ophthalmol.104, 34–41 (1986).

Branch Vein Occlusion Study Group, “Natural history and clinical management of central retinal vein occlusion,” Arch. Ophthalmol.115, 486–491 (1997).
[PubMed]

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123, 253–257 (2005).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (2)

J. K. Luttrull, D. C. Musch, and M. A. Mainster, “Subthreshold diode micropulse photocoagulation for the treatment of clinically significant diabetic macular oedema,” Br. J. Ophthalmol.89, 74–80 (2005).
[CrossRef]

C. Framme, R. Brinkmann, R. Birngruber, and J. Roider, “Autofluorescence imaging after selective rpe laser treatment in macular diseases and clinical outcome: a pilot study,” Br. J. Ophthalmol.86, 1099–1106 (2002).
[CrossRef] [PubMed]

Clin. Experiment. Ophthalmol. (1)

L. M. Sakata, J. Deleon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve - a review,” Clin. Experiment. Ophthalmol.37, 90–99 (2009).
[CrossRef] [PubMed]

Clin. Ophthalmol. (1)

G. L. Giudice, V. de Belvis, M. Tavolato, and A. Galan, “Large-spot subthreshold transpupillary thermotherapy for chronic serous macular detachment,” Clin. Ophthalmol.5, 355–560 (2011).
[CrossRef] [PubMed]

Curr. Eye. Res. (1)

C. Framme, A. Walter, P. Prahs, R. Regler, D. Theisen-Kunde, C. Alt, and R. Brinkmann, “Structural changes of the retina after conventional laser photocoagulation and selective retina treatment (SRT) in spectral domain OCT,” Curr. Eye. Res.34, 568–579 (2009).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

R. Seip and E. S. Ebbini, “Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound,” IEEE Trans. Biomed. Eng.42, 828–839 (1995).
[CrossRef] [PubMed]

Int. Ophthalmol. (1)

R. Birngruber, E. Drechsel, F. Hillenkamp, and V. P. Gabel, “Minimal spot size on the retina formed by the optical system of the eye,” Int. Ophthalmol.1, 175–178 (1979).
[CrossRef] [PubMed]

Invest. Ophthalmol. (1)

W. J. Geeraets, R. C. Williams, G. Chan, J. Ham, W. T., D. Guerry, and F. H. Schmidt, “The relative absorption of thermal energy in retina and choroid,” Invest. Ophthalmol.1, 340–347 (1962).
[PubMed]

Invest. Ophthalmol. Vis. Sci (1)

J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, and C. A. Toth, “Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging,” Invest. Ophthalmol. Vis. Sci52, 3153–3159 (2011).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. Y. Schmidt and R. D. Peisch, “Melanin concentration in normal human retinal pigment epithelium. regional variation and age-related reduction,” Invest. Ophthalmol. Vis. Sci.27, 1063–1067 (1986).
[PubMed]

J. Biomed. Opt. (4)

G. Schüle, G. Hüttmann, C. Framme, J. Roider, and R. Brinkmann, “Noninvasive optoacoustic temperature determination at the fundus of the eye during laser irradiation,” J. Biomed. Opt.9, 173–179 (2004).
[CrossRef] [PubMed]

J. Kandulla, H. Elsner, R. Birngruber, and R. Brinkmann, “Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation.” J. Biomed. Opt.11, 041111 (2006).
[CrossRef] [PubMed]

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Real-time microscopic visualization of tissue response to laser thermal therapy,” J. Biomed. Opt.12, 020501 (2007).
[CrossRef] [PubMed]

B. Soroushian, W. M. Whelan, and M. C. Kolios, “Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties,” J. Biomed. Opt.15, 065002 (2010).
[CrossRef]

J. Biophotonics (1)

J. Sandeau, J. Kandulla, H. Elsner, R. Brinkmann, G. Apiou-Sbirlea, and R. Birngruber, “Numerical modelling of conductive and convective heat transfers in retinal laser applications,” J. Biophotonics1, 43–52 (2008).
[CrossRef]

Laser Life Sci. (1)

D. E. Freund, R. L. McCally, R. A. Farrell, and D. H. Sliney, “A theoretical comparison of retinal temperature changes resulting from exposure to rectangular and gaussian beams,” Laser Life Sci.7, 71 – 89 (1996).

Laser Surg. Med. (1)

J. Inderfurth, R. Ferguson, M. Frish, and R. Birngruber, “Dynamic reflctometer for control of laser photocoagulations on the retina,” Laser Surg. Med.15, 54–61 (1994).
[CrossRef]

Lasers Surg. Med. (1)

J. F. Black, N. Wade, and J. K. Barton, “Mechanistic comparison of blood undergoing laser photocoagulation at 532 and 1,064 nm,” Lasers Surg. Med.36, 155–165 (2005).
[CrossRef] [PubMed]

Ophthalmology (1)

Early Treatment Diabetic Retinopathy Study Research Group, “Early photocoagulation for diabetic retinopathy. ETDRS report number 9,” Ophthalmology98, 766–785 (1991).
[PubMed]

Opt. Express (1)

Phys. Med. Biol. (3)

M. L. Dark, L. T. Perelman, I. Itzkan, J. L. Schaffer, and M. S. Feld, “Physical properties of hydrated tissue determined by surface interferometry of laser-induced thermoelastic deformation,” Phys. Med. Biol.45, 529–539 (2000).
[CrossRef] [PubMed]

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues–an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995).
[CrossRef] [PubMed]

J. K. Barton, A. Rollins, S. Yazdanfar, T. J. Pfefer, V. Westphal, and J. A. Izatt, “Photothermal coagulation of blood vessels: a comparison of high-speed optical coherence tomography and numerical modelling,” Phys. Med. Biol.46, 1665–1678 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

K. Schlott, J. Stalljohann, B. Weber, J. Kandulla, K. Herrmann, R. Birngruber, and R. Brinkmann, “Optoacoustic online temperature determination during retinal laser photocoagulation,” Proc. SPIE6632, 66321B (2007).
[CrossRef]

Science (1)

D. Huang, E. Swanson, C. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (5)

R. Brinkmann, S. Koinzer, K. Schlott, L. Ptaszynski, M. Bever, A. Baade, S. Luft, Y. Miura, J. Roider, and R. Birngruber, “Realtime temperature determination during retinal photocoagulation on patients,” J. Biomed. Opt. (to be published).
[PubMed]

F. A. Duck, Physical Properties of tissue—a Comprehensive Reference Book (Academic, London, 1990).
[PubMed]

V.-P. Gabel, R. Birngruber, and F. Hillenkamp, Die Lichtabsorption im Augenhintergrund: Mikrospektralphotometrische Bestimmung der wellenabhängigen Lichtabsorption in Pigmentepithel und Chorioidea von Mensch, Rhesusaffe und Chinchillakaninchen, GSF-Bericht A (GSF, München, 1976).
[PubMed]

R. Birngruber, “Thermal modeling in biological tissues,” in Lasers in Biology and Medicine, F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds. (Plenum Press, New York, 1980), 77–97.

M. Müller, P. Steven, E. Lankenau, M. Krug, E. Acidereli, S. Oelkers, R. Birngruber, S. Grisanti, and G. Hüttmann, “OCT-camera assisted intraoperative anterior and posterior segment surgery—first results of the new intraoperative OCT,” presented at World Ophthalmology Congress 2010, XXXII International Congress of Ophthalmology, 108th DOG Congress, Berlin, 5–9 June 2010.

Supplementary Material (9)

» Media 1: MPG (3892 KB)     
» Media 2: MPG (3888 KB)     
» Media 3: MPG (3881 KB)     
» Media 4: MPG (3892 KB)     
» Media 5: MPG (3895 KB)     
» Media 6: MPG (3895 KB)     
» Media 7: MPG (3895 KB)     
» Media 8: MPG (3885 KB)     
» Media 9: MPG (3445 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Figure 1
Figure 1

Experimental setup for simultaneous OCT and temperature measurements during photocoagulation. The 532 nm cw coagulation laser was combined with a high-speed OCT using a slit lamp as common basis for visualization of the retina. For detailed description of the setup see main text.

Figure 2
Figure 2

a.) Spatially resolved temperature increase ΔT calculated after 400 ms irradiation with 10 mW at spot diameters D of 50 μm, 100 μm, and 200 μm. b.) Expected specific displacement ζ at 25°C for various spot sizes and irradiation times, calculated from the temperature profiles and the density change of water. Variations in ζ are caused by different axial temperature profiles.

Figure 3
Figure 3

a.) Image of the fundus of an enucleated porcine eye after laser coagulations at different irradiances (left). The spot size was 200 μm, the exposure time 400 ms. The two bottom areas in the center row marked by the crosses were not irradiated. b.) Irradiance E, optoacoustically measured peak temperature ΔTend and visibility of the lesions are listed in the table. Clearly visible lesions are marked in red, slightly visible lesions in black, and invisible lesions in blue.

Figure 4
Figure 4

a.) Temperature at the RPE during laser irradiation measured by optoacoustics. Begin and end of the irradiation are marked by a strong increase and decrease of the temperature, respectively. b.) Maximum temperature at the end of the irradiation versus irradiance. The blue, black and red colors indicate invisibility, slight and full visibility of the lesions, respectively. Coloured background indicates the temperature ranges, below 21 K and above 41 K, in which all lesions are invisible or have a good visibility, respectively.

Figure 5
Figure 5

OCT images before (left) and after (right) the irradiation for three representative lesions 89 W/cm2 [ Media 1] (a), 220 W/cm2 [ Media 2] (b), and 400 W/cm2 [ Media 3] (c). The region of the laser exposure is marked by two vertical lines. The dynamics of the tissue changes are visualized in the corresponding movies, which show the whole time sequence of B-scans. By laterally averaging A-scans in the irradiated region (within the white lines) an M-scan (averaged A-scan versus time) was calculated (center). Starting and end point of the irradiation are marked by arrows. Retinal layers are marked by PRL: photoreceptor layer, RPE: retinal pigment epithelium, CHO: choroid.

Figure 6
Figure 6

a) Change of the OCT signal ΔSPRL in the in the photoreceptor layer (PRL) and displacement Δzs of the retinal surface during irradiation with 400 W/cm2T > 69 K). b) Signal change Δ S P R L end and displacement Δ z s end at the end of the irradiation for different irradiances. Visibility of the lesion is indicated by the color of the symbol going from blue (invisible) over black (slightly visible) to red (clearly visible lesion). Coloured background indicates the temperature ranges for the visibility of the lesions.

Figure 7
Figure 7

Color-Doppler OCT images of the coagulation process shortly after the start (150 ms, 1st column), during (400 ms, 2nd column), and at the end of the irradiation (525 ms, 3rd column). Images were taken from three movies which show the time sequence at three different irradiations of 89W/cm2 [ Media 4] (a), 220W/cm2 [ Media 5] (b), and 400W/cm2 [ Media 6] (c). In optoacoustically measured temperature curves the time points, at which the Doppler images are here displayed, are marked by arrows (d–f).

Figure 8
Figure 8

Temperature increase ΔT (blue), displacement in the irradiated area Δz (red), and displacement of the retina surface Δzs (grey) at different irradiances. Below 89 W/cm2 surface displacement Δzs is not shown, because the noise (approximately 4 μm) was larger than the displacement.

Figure 9
Figure 9

Displacement Δz of the retina in the irradiated region at the end of the irradiation (530 ms) and the end of the OCT recording (1160 ms) versus the maximum temperature increase ΔTend.

Figure 10
Figure 10

Displacement Δzend of the retina in the irradiated region and the temperature increase ΔTend at the end of the irradiation in dependence on the irradiances. The spot diameters were varied from 50 μm to 200 μm, the irradiation time from 50ms to 400ms. Underlayed colors indicate irradiation ranges for invisible (blue), slightly (yellow) and clearly visible lesions (pink).

Figure 11
Figure 11

Expansion of the RPE at the end of the irradiation at 89 W/cm2 (a), 220 W/cm2 [ Media 7] (b), and 400 W/cm2 [ Media 8] (c).

Figure 12
Figure 12

Studying photocoagulation in-vivo. OCT images before irradiation (left), M-scan calculated by averaging all A-scans in the irradiated area (center) and OCT image after the irradiation (right). Starting and end point of the irradiation with 55 W/cm2 are marked by arrows. A movie of the sequence of B-scans during the irradiation is shown in [ Media 9]. Spot size was 133 μm, the exposure time 500 ms.

Figure 13
Figure 13

Correction of the longitudinal tissue motion by subtraction a linear varying phase function. a.) Uncorrected Doppler image. b.) Phase averaged over the depth of the retina and linear fit. c.) Corrected average phase. d.) Corrected Doppler image.

Figure 14
Figure 14

a) Fluorescence angiography of the rabbit retina after photocoagulation. No increased fluorescence was observed at the sub-threshold lesion #130 after irradiation with 160 W/cm2 for 500 ms. b) Temperature increase ΔT (blue) and displacement Δz in the irradiated area (red) measured in vivo. The spot size was 133 μm.

Tables (1)

Tables Icon

Table 1 Characteristic parameters of tissue reactions, calculated from the OCT measurements at different irradiation times and spot sizes*

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

v z ( t ) = λ 0 4 π Δ φ Δ t
Δ z ( t ) = 0 t v z ( τ ) d τ
Δ T ( r , t ) t α 2 Δ T ( r , t ) = q ( r , t ) ρ 0 c p
Δ T ( r , t ) = μ a Φ 8 ρ 0 c p 0 t d t θ ( τ + t t ) exp ( μ a z + μ a 2 α t ) × [ erf ( x a 2 α t ) erf ( x + a 2 α t ) ] [ erf ( y a 2 α t ) erf ( y + a 2 α t ) ] × [ erf ( z 2 α t μ a α t ) erf ( z d 2 α t μ a α t ) ] .
Δ T total ( r , t ) = i = 1 3 Δ T i ( r , t )
Δ z = 1 3 z 1 z 2 ρ ( T 0 ) ρ ( T ( z ) ) ρ ( T 0 ) d z
ɛ z ( z ) = Δ z z
Δ z z = 1 3 ρ ( T 0 ) ρ ( T ( z ) ) ρ ( T 0 )

Metrics