Abstract

A parametric level set method (PaLS) is implemented for image reconstruction for hyperspectral diffuse optical tomography (DOT). Chromophore concentrations and diffusion amplitude are recovered using a linearized Born approximation model and employing data from over 100 wavelengths. The images to be recovered are taken to be piecewise constant and a newly introduced, shape-based model is used as the foundation for reconstruction. The PaLS method significantly reduces the number of unknowns relative to more traditional level-set reconstruction methods and has been show to be particularly well suited for ill-posed inverse problems such as the one of interest here. We report on reconstructions for multiple chromophores from simulated and experimental data where the PaLS method provides a more accurate estimation of chromophore concentrations compared to a pixel-based method.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
    [PubMed]
  2. R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
    [CrossRef] [PubMed]
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
    [CrossRef]
  4. M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol.44, 2703–2721 (1999).
    [CrossRef] [PubMed]
  5. S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
    [CrossRef] [PubMed]
  6. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
    [CrossRef]
  7. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
    [CrossRef] [PubMed]
  8. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004).
    [CrossRef]
  9. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett.26, 701–703 (2001).
    [CrossRef]
  10. F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011).
    [CrossRef]
  11. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999).
    [CrossRef]
  12. K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35, 3447–3458, (1996).
    [CrossRef] [PubMed]
  13. G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
    [CrossRef] [PubMed]
  14. D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express1, 404–413 (1997).
    [CrossRef] [PubMed]
  15. A. Aghasi, M. Kilmer, and E. L. Miller “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011).
    [CrossRef]
  16. A. Aghasi, E. L. Miller, and L. M. Abriola “Characterization of source zone architecture: a joint electrical and hydrological inversion approach,” presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec. 2011.
  17. F. Larusson, S. Fantini, and E. L. Miller, “Parametric level-set approach for hyperspectral diffuse optical tomography,” in 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2011), pp. 949–955.
  18. O. Dorn, “A shape reconstruction method for diffuse optical tomography using a transport model and level sets,” in 2002 IEEE International Symposium on Biomedical Imaging, 2002. Proceedings (IEEE, 2002), pp. 1015–1018.
  19. M. Schweiger, O. Dorn, and S. R. Arridge, “3-D shape and contrast reconstruction in optical tomography with level sets,” J. Phys.: Conf. Ser.124, 012043 (2008).
    [CrossRef]
  20. M. E. Kilmer, E. L. Miller, A. Barbaro, and David Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42, 3129–3144 (2003).
    [CrossRef] [PubMed]
  21. S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
    [CrossRef]
  22. O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl.22, R67–R131 (2006).
    [CrossRef]
  23. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995).
    [CrossRef]
  24. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
    [CrossRef] [PubMed]
  25. D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994).
    [CrossRef] [PubMed]
  26. A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, 2001).
  27. B. Brendel, R. Ziegler, and T. Nielsen “Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography,” Appl. Opt.47, 6392–6403 (2008).
    [CrossRef] [PubMed]
  28. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
    [CrossRef] [PubMed]
  29. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
    [CrossRef]
  30. H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
    [CrossRef] [PubMed]
  31. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
    [CrossRef] [PubMed]
  32. T. Chan and L. Vese “Active contours without edges,” IEEE Trans. Image Process.10, 266–277 (2001).
    [CrossRef]
  33. H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000).
    [CrossRef]
  34. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002)
  35. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005).
    [CrossRef] [PubMed]
  36. K. Madsen, H. Bruun, and O. Tingleff “Methods for non-linear least squares problems,” lecture notes (2004).
  37. C. R. Vogel, Computational Methods for Inverse Problems (SIAM, 2002)
    [CrossRef]
  38. T. T. Wu and K. Lange, “Coordinate descent algorithms for lasso penalized regression,” Ann. Appl. Stat.2, 224–244 (2008).
    [CrossRef]
  39. B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J. Biomed. Opt.14, 034041 (2009).
    [CrossRef] [PubMed]
  40. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
    [CrossRef] [PubMed]
  41. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
    [CrossRef] [PubMed]
  42. S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water” (Oregon Medical Laser Center, 2007), http://omlc.ogi.edu/spectra/hemoglobin/summary.html .
  43. A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).
  44. J. D. Vylder and W. Philips, “A computational efficient external energy for active contour segmentation using edge propagation,” in IEEE 2100 International Conference on Image Processing (ICIP 2010) (IEEE, 2010), pp. 661–664.
  45. T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
    [CrossRef] [PubMed]
  46. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
    [CrossRef] [PubMed]
  47. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
    [CrossRef] [PubMed]
  48. N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt.12, 051602 (2007).
    [CrossRef] [PubMed]
  49. E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
    [CrossRef] [PubMed]
  50. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
    [CrossRef] [PubMed]
  51. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
    [CrossRef] [PubMed]
  52. S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
    [CrossRef]
  53. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000).
    [CrossRef] [PubMed]
  54. M. E. Eames, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt.13, 054037 (2008).
    [CrossRef] [PubMed]

2011

F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011).
[CrossRef]

A. Aghasi, M. Kilmer, and E. L. Miller “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011).
[CrossRef]

2010

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

2009

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J. Biomed. Opt.14, 034041 (2009).
[CrossRef] [PubMed]

2008

B. Brendel, R. Ziegler, and T. Nielsen “Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography,” Appl. Opt.47, 6392–6403 (2008).
[CrossRef] [PubMed]

M. Schweiger, O. Dorn, and S. R. Arridge, “3-D shape and contrast reconstruction in optical tomography with level sets,” J. Phys.: Conf. Ser.124, 012043 (2008).
[CrossRef]

S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
[CrossRef]

T. T. Wu and K. Lange, “Coordinate descent algorithms for lasso penalized regression,” Ann. Appl. Stat.2, 224–244 (2008).
[CrossRef]

M. E. Eames, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt.13, 054037 (2008).
[CrossRef] [PubMed]

2007

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt.12, 051602 (2007).
[CrossRef] [PubMed]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

2006

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl.22, R67–R131 (2006).
[CrossRef]

2005

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
[PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

2004

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004).
[CrossRef]

2003

M. E. Kilmer, E. L. Miller, A. Barbaro, and David Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42, 3129–3144 (2003).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
[CrossRef] [PubMed]

2002

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

2001

T. Chan and L. Vese “Active contours without edges,” IEEE Trans. Image Process.10, 266–277 (2001).
[CrossRef]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett.26, 701–703 (2001).
[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

2000

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000).
[CrossRef]

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000).
[CrossRef] [PubMed]

1999

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol.44, 2703–2721 (1999).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999).
[CrossRef]

1997

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express1, 404–413 (1997).
[CrossRef] [PubMed]

E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
[CrossRef] [PubMed]

1996

1995

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995).
[CrossRef]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

1994

D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994).
[CrossRef] [PubMed]

Abriola, L. M.

A. Aghasi, E. L. Miller, and L. M. Abriola “Characterization of source zone architecture: a joint electrical and hydrological inversion approach,” presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec. 2011.

Aghasi, A.

A. Aghasi, M. Kilmer, and E. L. Miller “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011).
[CrossRef]

A. Aghasi, E. L. Miller, and L. M. Abriola “Characterization of source zone architecture: a joint electrical and hydrological inversion approach,” presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec. 2011.

Aguirre, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Ardeshirpour, Y.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Arridge, S. R.

M. Schweiger, O. Dorn, and S. R. Arridge, “3-D shape and contrast reconstruction in optical tomography with level sets,” J. Phys.: Conf. Ser.124, 012043 (2008).
[CrossRef]

S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol.44, 2703–2721 (1999).
[CrossRef] [PubMed]

Barbaro, A.

Barbieri, B.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

Boas, D.

D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994).
[CrossRef] [PubMed]

Boas, D. A.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

D. A. Boas, “A fundamental limitation of linearized algorithms for diffuse optical tomography,” Opt. Express1, 404–413 (1997).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995).
[CrossRef]

Boas, David

Boverman, G.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Brendel, B.

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J. Biomed. Opt.14, 034041 (2009).
[CrossRef] [PubMed]

B. Brendel, R. Ziegler, and T. Nielsen “Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography,” Appl. Opt.47, 6392–6403 (2008).
[CrossRef] [PubMed]

Brooks, D.

Brooks, D. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

Bruun, H.

K. Madsen, H. Bruun, and O. Tingleff “Methods for non-linear least squares problems,” lecture notes (2004).

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Carp, S. A.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Cerussi, A. E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

Chan, T.

T. Chan and L. Vese “Active contours without edges,” IEEE Trans. Image Process.10, 266–277 (2001).
[CrossRef]

Chance, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995).
[CrossRef]

D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994).
[CrossRef] [PubMed]

Chaudhari, A. J.

A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).

Chaves, T.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Choe, R.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

Comelli, D.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
[CrossRef] [PubMed]

Corlu, A.

Cronin, E. B.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
[CrossRef] [PubMed]

Culver, J. P.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett.26, 701–703 (2001).
[CrossRef]

Czarnota, G.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

Deckers, P. J.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Dehghani, H.

M. E. Eames, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt.13, 054037 (2008).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Dent, R.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

Dorn, O.

M. Schweiger, O. Dorn, and S. R. Arridge, “3-D shape and contrast reconstruction in optical tomography with level sets,” J. Phys.: Conf. Ser.124, 012043 (2008).
[CrossRef]

S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
[CrossRef]

O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl.22, R67–R131 (2006).
[CrossRef]

O. Dorn, “A shape reconstruction method for diffuse optical tomography using a transport model and level sets,” in 2002 IEEE International Symposium on Biomedical Imaging, 2002. Proceedings (IEEE, 2002), pp. 1015–1018.

Durduran, T.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Dutta, J.

A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).

Eames, M. E.

M. E. Eames, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt.13, 054037 (2008).
[CrossRef] [PubMed]

Fabiani, M.

E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
[CrossRef] [PubMed]

Fang, Q.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

Fantini, S.

F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011).
[CrossRef]

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt.12, 051602 (2007).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
[PubMed]

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

F. Larusson, S. Fantini, and E. L. Miller, “Parametric level-set approach for hyperspectral diffuse optical tomography,” in 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2011), pp. 949–955.

Fedkiw, R.

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002)

Filiaci, M. E.

Franceschini, M. A.

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

Gaudette, T.

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

Giammarco, J.

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

Gibson, J. J.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Gratton, C.

E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
[CrossRef] [PubMed]

Gratton, E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, and S. Fantini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
[CrossRef] [PubMed]

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

Gunasekara, A.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005).
[CrossRef] [PubMed]

Heffer, E. L.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
[PubMed]

Hegde, P. U.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Hillman, E. M.

Hillman, E. M. C.

Holboke, M. J.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett.26, 701–703 (2001).
[CrossRef]

Hsiang, D.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Hueber, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

Intes, X.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005).
[CrossRef] [PubMed]

Jiang, H.

Jiang, S.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Joshi, A. A.

A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).

Kane, M.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Kang, M.

H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000).
[CrossRef]

Kilmer, M.

A. Aghasi, M. Kilmer, and E. L. Miller “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011).
[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Kilmer, M. E.

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Kolehmainen, V.

S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
[CrossRef]

Kopans, D. B.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

Kukreti, S.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

Kurtzman, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Lange, K.

T. T. Wu and K. Lange, “Coordinate descent algorithms for lasso penalized regression,” Ann. Appl. Stat.2, 224–244 (2008).
[CrossRef]

Larusson, F.

F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011).
[CrossRef]

F. Larusson, S. Fantini, and E. L. Miller, “Parametric level-set approach for hyperspectral diffuse optical tomography,” in 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2011), pp. 949–955.

Leahy, R. M.

A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).

Lee, K.

Lesselier, D.

O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl.22, R67–R131 (2006).
[CrossRef]

Li, A.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Liu, N.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt.12, 051602 (2007).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
[PubMed]

Madsen, K.

K. Madsen, H. Bruun, and O. Tingleff “Methods for non-linear least squares problems,” lecture notes (2004).

Maier, J. S.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

Mandelis, A.

A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, 2001).

Maulik, D.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

McBride, T. O.

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Merriman, B.

H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000).
[CrossRef]

Miller, E. L.

A. Aghasi, M. Kilmer, and E. L. Miller “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011).
[CrossRef]

F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011).
[CrossRef]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

M. E. Kilmer, E. L. Miller, A. Barbaro, and David Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42, 3129–3144 (2003).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

F. Larusson, S. Fantini, and E. L. Miller, “Parametric level-set approach for hyperspectral diffuse optical tomography,” in 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2011), pp. 949–955.

A. Aghasi, E. L. Miller, and L. M. Abriola “Characterization of source zone architecture: a joint electrical and hydrological inversion approach,” presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec. 2011.

Moore, R. H.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

Nielsen, T.

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J. Biomed. Opt.14, 034041 (2009).
[CrossRef] [PubMed]

B. Brendel, R. Ziegler, and T. Nielsen “Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography,” Appl. Opt.47, 6392–6403 (2008).
[CrossRef] [PubMed]

Ntziachristos, V.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett.26, 701–703 (2001).
[CrossRef]

O’Leary, M. A.

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995).
[CrossRef]

D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994).
[CrossRef] [PubMed]

Osher, S.

H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000).
[CrossRef]

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002)

Osterberg, U. L.

Paulsen, K. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999).
[CrossRef]

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35, 3447–3458, (1996).
[CrossRef] [PubMed]

Pera, V. E.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
[PubMed]

Philips, W.

J. D. Vylder and W. Philips, “A computational efficient external energy for active contour segmentation using edge propagation,” in IEEE 2100 International Conference on Image Processing (ICIP 2010) (IEEE, 2010), pp. 661–664.

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
[CrossRef] [PubMed]

Pogue, B. W.

M. E. Eames, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt.13, 054037 (2008).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999).
[CrossRef]

Poplack, S. P.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Prewitt, J.

Ricci, A.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Rosenfeld, W.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

Rycroft, M.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Sassaroli, A.

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt.12, 051602 (2007).
[CrossRef] [PubMed]

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
[PubMed]

Schweiger, M.

S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
[CrossRef]

M. Schweiger, O. Dorn, and S. R. Arridge, “3-D shape and contrast reconstruction in optical tomography with level sets,” J. Phys.: Conf. Ser.124, 012043 (2008).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol.44, 2703–2721 (1999).
[CrossRef] [PubMed]

Selb, J.

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Shattuck, D. W.

A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).

Slemp, A.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Soliman, H.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

Spayne, J.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

Srinivasan, S.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Stankovic, M. R.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

Stubblefield, P. G.

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

Tanamai, W.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

Tannenbaum, S. H.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
[CrossRef] [PubMed]

Tingleff, O.

K. Madsen, H. Bruun, and O. Tingleff “Methods for non-linear least squares problems,” lecture notes (2004).

Toga, A. W.

A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).

Toronov, V.

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
[CrossRef] [PubMed]

Tosteson, T. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Vese, L.

T. Chan and L. Vese “Active contours without edges,” IEEE Trans. Image Process.10, 266–277 (2001).
[CrossRef]

Vogel, C. R.

C. R. Vogel, Computational Methods for Inverse Problems (SIAM, 2002)
[CrossRef]

Vylder, J. D.

J. D. Vylder and W. Philips, “A computational efficient external energy for active contour segmentation using edge propagation,” in IEEE 2100 International Conference on Image Processing (ICIP 2010) (IEEE, 2010), pp. 661–664.

Walker, S. A.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

Wu, T. T.

T. T. Wu and K. Lange, “Coordinate descent algorithms for lasso penalized regression,” Ann. Appl. Stat.2, 224–244 (2008).
[CrossRef]

Xu, C.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Yaffe, M. J.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005).
[CrossRef] [PubMed]

Yodh, A.

D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994).
[CrossRef] [PubMed]

Yodh, A. G.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
[CrossRef] [PubMed]

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett.26, 701–703 (2001).
[CrossRef]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995).
[CrossRef]

Zacharopoulos, A.

S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
[CrossRef]

Zhang, Q.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

Zhang, Y.

Zhao, H. K.

H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000).
[CrossRef]

Zhu, Q.

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

Ziegler, R.

Zubkov, L.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

Zubovits, J.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Ann. Appl. Stat.

T. T. Wu and K. Lange, “Coordinate descent algorithms for lasso penalized regression,” Ann. Appl. Stat.2, 224–244 (2008).
[CrossRef]

Appl. Opt.

M. E. Kilmer, E. L. Miller, A. Barbaro, and David Boas, “Three-dimensional shape-based imaging of absorption perturbation for diffuse optical tomography,” Appl. Opt.42, 3129–3144 (2003).
[CrossRef] [PubMed]

B. Brendel, R. Ziegler, and T. Nielsen “Algebraic reconstruction techniques for spectral reconstruction in diffuse optical tomography,” Appl. Opt.47, 6392–6403 (2008).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44, 2082–2093 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Appl. Opt.44, 1948–1956 (2005).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt.42, 135–145 (2004).
[CrossRef]

B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999).
[CrossRef]

K. D. Paulsen and H. Jiang, “Enhanced frequency-domain optical image reconstruction in tissues through total-variation minimization,” Appl. Opt.35, 3447–3458, (1996).
[CrossRef] [PubMed]

Biomed. Opt. Express

F. Larusson, S. Fantini, and E. L. Miller, “Hyperspectral image reconstruction for diffuse optical tomography,” Biomed. Opt. Express2, 947–965 (2011).
[CrossRef]

Clin. Cancer Res.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Comput. Vision Image Understanding

H. K. Zhao, S. Osher, B. Merriman, and M. Kang, “Implicit, nonparametric shape reconstruction from unorganized points using a variational level set method,” Comput. Vision Image Understanding80, 295–314 (2000).
[CrossRef]

IEEE Signal Process. Mag.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag.18(6), 57–75 (2001).
[CrossRef]

IEEE Trans. Image Process.

T. Chan and L. Vese “Active contours without edges,” IEEE Trans. Image Process.10, 266–277 (2001).
[CrossRef]

Inverse Probl.

O. Dorn and D. Lesselier, “Level set methods for inverse scattering,” Inverse Probl.22, R67–R131 (2006).
[CrossRef]

J. Biomed. Opt.

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography,” J. Biomed. Opt.14, 034041 (2009).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt.9, 1137–1142 (2004).
[CrossRef] [PubMed]

N. Liu, A. Sassaroli, and S. Fantini, “Paired-wavelength spectral approach to measuring the relative concentrations of two localized chromophores in turbid media: an experimental study,” J. Biomed. Opt.12, 051602 (2007).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and nir scattering in breast tissue: analysis of intersubject variability and menstrual cycles changes,” J. Biomed. Opt.9, 541–552 (2004).
[CrossRef] [PubMed]

M. E. Eames, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt.13, 054037 (2008).
[CrossRef] [PubMed]

J. Phys.: Conf. Ser.

S. R. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos, “Parameter and structure reconstruction in optical tomography,” J. Phys.: Conf. Ser.135, 012001 (2008).
[CrossRef]

M. Schweiger, O. Dorn, and S. R. Arridge, “3-D shape and contrast reconstruction in optical tomography with level sets,” J. Phys.: Conf. Ser.124, 012043 (2008).
[CrossRef]

Med. Phys.

J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003).
[CrossRef] [PubMed]

Opt. Eng.

S. Fantini, M. A. Franceschini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, “Frequency-domain multi-channel optical detector for noninvasive tissue spectroscopy and oximetry,” Opt. Eng.34, 32–42 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. Lond. B. Biol. Sci.

E. Gratton, S. Fantini, M. A. Franceschini, C. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.352, 727–735 (1997).
[CrossRef] [PubMed]

Photochem. Photobiol. Sci.

P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, and R. Cubeddu, “In vivo absorption and scattering spectroscopy of biological tissues,” Photochem. Photobiol. Sci.2, 124–129 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol

R. J. Gaudette, D. H. Brooks, C. A. DiMarzio, M. E. Kilmer, E. L. Miller, T. Gaudette, and D. A. Boas, “A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient,” Phys. Med. Biol45, 1051–1069 (2000).
[CrossRef] [PubMed]

Phys. Med. Biol.

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information,” Phys. Med. Biol.44, 2703–2721 (1999).
[CrossRef] [PubMed]

S. Fantini, D. Hueber, M. A. Franceschini, E. Gratton, W. Rosenfeld, P. G. Stubblefield, D. Maulik, and M. R. Stankovic, “Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy,” Phys. Med. Biol.44, 1543–1563 (1999).
[CrossRef] [PubMed]

G. Boverman, Q. Fang, S. A. Carp, E. L. Miller, D. H. Brooks, J. Selb, R. H. Moore, D. B. Kopans, and D. A. Boas, “Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography,” Phys. Med. Biol.52, 3619–3641 (2007).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005).
[CrossRef] [PubMed]

T. Durduran, R. Choe, J. P. culver, L. Zubkov, M. J. Holboke, J. Giammarco, B. Chance, and A. G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phys. Med. Biol.47, 2847–2861 (2002).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantitative spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information,” Phys. Med. Biol.50, 3941–3956 (2005).
[CrossRef] [PubMed]

Proc. Nat. Acad. Sci. U.S.A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Proc. Nat. Acad. Sci. U.S.A.104, 4014–4019 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid mri-guided near-infrared spectral tomography,” Proc. Natl. Acad. Sci. U.S.A.103, 8828–8833 (2006).
[CrossRef] [PubMed]

D. Boas, M. A. O’Leary, B. Chance, and A. Yodh, “Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications,” Proc. Natl. Acad. Sci. U.S.A.91, 4887–4891 (1994).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100, 12349–12354 (2003).
[CrossRef] [PubMed]

Radiology

Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256, 367–378 (2010).
[CrossRef] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254, 277–284 (2010).
[CrossRef]

SIAM J. Imaging Sci.

A. Aghasi, M. Kilmer, and E. L. Miller “Parametric level set methods for inverse problems,” SIAM J. Imaging Sci.4, 618–650 (2011).
[CrossRef]

Technol. Cancer Res. Treat.

S. Fantini, E. L. Heffer, V. E. Pera, A. Sassaroli, and N. Liu, “Spatial and spectral information in optical mammography,” Technol. Cancer Res. Treat.4, 471–482 (2005).
[PubMed]

Other

A. Aghasi, E. L. Miller, and L. M. Abriola “Characterization of source zone architecture: a joint electrical and hydrological inversion approach,” presented at 2011 Fall Meeting, AGU, San Francisco, Calif., 5–9 Dec. 2011.

F. Larusson, S. Fantini, and E. L. Miller, “Parametric level-set approach for hyperspectral diffuse optical tomography,” in 2011 IEEE International Symposium on Biomedical Imaging: from Nano to Macro (IEEE, 2011), pp. 949–955.

O. Dorn, “A shape reconstruction method for diffuse optical tomography using a transport model and level sets,” in 2002 IEEE International Symposium on Biomedical Imaging, 2002. Proceedings (IEEE, 2002), pp. 1015–1018.

S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, 2002)

K. Madsen, H. Bruun, and O. Tingleff “Methods for non-linear least squares problems,” lecture notes (2004).

C. R. Vogel, Computational Methods for Inverse Problems (SIAM, 2002)
[CrossRef]

A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, 2001).

S. Prahl, “Tabulated molar extinction coefficient for hemoglobin in water” (Oregon Medical Laser Center, 2007), http://omlc.ogi.edu/spectra/hemoglobin/summary.html .

A. A. Joshi, A. J. Chaudhari, D. W. Shattuck, J. Dutta, R. M. Leahy, and A. W. Toga, “Posture matching and elastic registration of a mouse atlas to surface topography range data,” in IEEE International Symposium on Biomedical Imaging: from Nano to Macro, 2009. ISBI ’09 (IEEE, 2009), pp. 366–369 (2009).

J. D. Vylder and W. Philips, “A computational efficient external energy for active contour segmentation using edge propagation,” in IEEE 2100 International Conference on Image Processing (ICIP 2010) (IEEE, 2010), pp. 661–664.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) The setup of sources and detectors for simulation reconstructions. Same orientation of axes is used for experimental data. (b) Definition of domains used for the parametric level-set methods.

Fig. 6
Fig. 6

Reconstruction using the PaLS method. Middle column of images are generated with 8 wavelengths and rightmost images are generated with 176 wavelengths. From top to bottom the rows show HbO2, HbR, lipid, water and diffusion amplitude, respectively. Concentration units are in mM.

Fig. 2
Fig. 2

(a) Order of the basis functions used for the PaLS method. (b) Absorption spectra of the ink and dye solutions chromophores used in experimental measurements. Specifically chosen wavelengths are marked with an asterisk.

Fig. 3
Fig. 3

(a) Absorption spectra for the background, μa, and the inclusion, μa + Δμa, in experimental set 1, containing 10% ink and 90% dye. (b) Contrast between the background and the inclusion for experimental set 1.

Fig. 4
Fig. 4

(a) Absorption spectra for the background, μa, and the inclusion, μa + Δμa, in experimental set 2, containing 70% ink and 30% dye. (b) Contrast between the background and the inclusion for experimental set 2.

Fig. 5
Fig. 5

Reconstruction using a pixel based method. Middle column of images are generated with 8 wavelengths and rightmost images are generated with 176 wavelengths. From top to bottom the rows show HbO2, HbR, lipid, water and diffusion amplitude, respectively. Concentration units are in mM.

Fig. 7
Fig. 7

Pixel reconstruction from both experimental sets, set 1 containing 10% ink and 90% dye and set 2 70% ink and 30% dye.

Fig. 8
Fig. 8

PaLS Reconstruction from both experimental sets, set 1 containing 10% ink and 90% dye and set 2 70% ink and 30% dye.

Tables (6)

Tables Icon

Algorithm 1 Matlab-like code for estimating shape and concentration value

Tables Icon

Table 1 The MSE is compared for each chromphore for multiple wavelength choices. In each case the reconstructions are done with equally spaced wavelengths over the spectrum except for the 8 wavelength case.

Tables Icon

Table 2 D(S,G) is compared for each chromphore for multiple wavelength choices. In each case the reconstructions are done with equally spaced wavelengths over the spectrum except for the 8 wavelength case. D(S,G) is calculated comparing 80% of the target peak to the reconstruction.

Tables Icon

Table 3 D(S,G) is compared for each chromphore for multiple wavelength choices. In each case the reconstructions are done with equally spaced wavelengths over the spectrum except for the 6 wavelength case where we use optimally chosen wavelengths. D(S,G) is calculated comparing the half maximum of the target peak to the reconstruction.

Tables Icon

Table 4 Comparison of c i ^ and c i r ^ to target concentration values for experimental results, for the pixel-based method. Best performance is highlighted in bold.

Tables Icon

Table 5 Comparison of c i ^ and c i r ^ to target concentration values for experimental results, for the PaLS method. Best performance is highlighted in bold.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

D 0 ( r , λ ) Φ ( r , λ ) + v μ a 0 ( r , λ ) Φ ( r , λ ) = v S ( r , λ )
Δ D ( r , λ ) = v 3 Δ Ψ ( λ λ 0 ) b = v Δ Ψ d ( λ ) .
[ 2 + k 0 2 ( λ ) ] Φ s ( r , λ ) = Δ k 2 ( r , λ ) Φ ( r , λ ) 1 D ( λ ) Δ D ( r , λ ) Φ
Φ s ( r , λ ) = v D ( λ ) ( Δ μ ( r , λ ) G ( r , r , λ ) Φ i ( r , λ ) d r + Δ D ( r , λ ) G ( r d , r j , λ ) Φ i ( r j , r s , λ ) d r )
Δ μ a ( r , λ ) = k = 1 N s ε k ( λ ) c k ( r ) .
c k ( r ) = j = 1 N v c k , j φ ( r )
φ ( r ) = { 1 , if r V j 0 , if r V j .
Φ s ( λ ) = a v D ( λ ) k , j = 1 N c , N V ( G ( r d , r j , λ ) Φ i ( r j , r s , λ ) ε i ( λ ) c k , j + G ( r d , r j , λ ) Φ i ( r j , r s , λ ) Δ D j ( λ ) ) .
[ Φ s ( λ 1 ) Φ s ( λ 2 ) Φ s ( λ N λ ) ] = [ ε 1 ( λ 1 ) K 1 a ε 2 ( λ 1 ) K 1 a ε N c ( λ 1 ) K 1 a K 1 d ε 1 ( λ 2 ) K 2 a ε 2 ( λ 2 ) K 2 a ε N c ( λ 2 ) K 2 a K 2 d ε 1 ( λ N λ ) K N λ a ε 2 ( λ N λ ) K N λ a ε N c ( λ N λ ) K N λ a K N λ d ] [ c 1 c 2 c N c Δ Ψ ] Φ s = Kc
χ ( x , y ) = { 1 if ( x , y ) Ω , 0 if ( x , y ) \ Ω .
c k ( x , y ) = χ ( x , y ) c k a + [ 1 χ ( x , y ) ] c k b
χ ( x , y ) = H ( 𝒪 ( x , y ) )
H ε ( x ) = { 1 if x > ε , 0 if x < ε . 1 2 [ 1 + x ε + 1 π sin ( π x ε ) ] if | x | ε .
𝒪 ( x , y ) = i = 1 L a i p i ( x , y )
Φ s = K ( θ ) = Kc ( θ )
c ^ = arg min c W ( K ( θ ) Φ s ) 2 2
σ m 2 = Ω ( m ) 10 S N R m 10 .
SNR m = 10 log 10 ( Ω ( m ) / Ω ( m ) ) .
ε = W ( K ( θ ) Φ ) .
M ( θ ) = ε T ε
J = [ ε ( θ ) { c a 1 , c b l , a } ]
( J T J + ρ I ) h = J T ε with ρ 0
Φ = Kc + n
M S E k = c k c ^ k 2 c k 2
D ( S , G ) = 2 | S G | | S | + | G |
μ s = Ψ ( λ λ 0 ) b .
c ink r ^ = c ink ^ / ( c ink ^ + c dye ^ )

Metrics