Abstract

We achieved photoacoustic ophthalmoscopy (PAOM) imaging of the retina with near-infrared (NIR) light illumination. A PAOM imaging system with dual-wavelength illumination at 1064 nm and 532 nm was built. We compared in vivo imaging results of both albino and pigmented rat eyes at the two wavelengths. The results show that the bulk optical absorption of the retinal pigment epithelium (RPE) is only slightly higher than that of the retinal vessels at 532 nm while it becomes more than an order of magnitude higher than that of the retinal vessels at 1064 nm. These studies suggest that although visible light illumination is suitable for imaging both the retinal vessels and the RPE, NIR light illumination, being more comfortable to the eye, is better suited for RPE melanin related investigations and diagnoses.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
    [CrossRef] [PubMed]
  2. Q. Wei, T. Liu, S. Jiao, and H. F. Zhang, “Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy,” J. Mod. Opt.58(21), 1997–2001 (2011).
    [CrossRef]
  3. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
    [CrossRef] [PubMed]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  5. T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express2(5), 1359–1365 (2011).
    [CrossRef] [PubMed]
  6. J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
    [CrossRef] [PubMed]
  7. X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
    [CrossRef] [PubMed]
  8. W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).
  9. American National Standards Institute (ANSI), “American national standard for the safe use of lasers,” Standard Z136.1–2007 (Laser Institute of America, Orlando, FL, 2007).
  10. P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology110(1), 15–21, quiz 22–23 (2003).
    [CrossRef] [PubMed]
  11. S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
    [CrossRef] [PubMed]
  12. M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
    [CrossRef] [PubMed]
  13. J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express2(1), 139–148 (2011).
    [CrossRef] [PubMed]
  14. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010).
    [CrossRef] [PubMed]
  15. R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
    [CrossRef] [PubMed]
  16. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005).
    [CrossRef] [PubMed]
  17. S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
    [CrossRef] [PubMed]
  18. A. Hughes and H. Wässle, “An estimate of image quality in the rat eye,” Invest. Ophthalmol. Vis. Sci.18(8), 878–881 (1979).
    [PubMed]
  19. M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40(6), 963–978 (1995).
    [CrossRef] [PubMed]
  20. M. Kinnunen and R. Myllylä, “Effect of glucose on photoacoustic signals at the wavelengths of 1064 and 532-nm in pig blood and Intralipid,” J. Phys. D Appl. Phys.38(15), 2654–2661 (2005).
    [CrossRef]
  21. S. L. Jacques, “Melanosome absorption coefficient,” http://omlc.ogi.edu/spectra/melanin/mua.html .
  22. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
    [CrossRef] [PubMed]
  23. K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
    [CrossRef]
  24. C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci.47(8), 3556–3564 (2006).
    [CrossRef] [PubMed]
  25. U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina30(1), 6–15 (2010).
    [CrossRef] [PubMed]
  26. X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 030502 (2012).
    [CrossRef]
  27. J. W. You, T. C. Chen, M. Mujat, B. H. Park, and J. F. de Boer, “Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging,” Opt. Express14(15), 6739–6748 (2006).
    [CrossRef] [PubMed]
  28. S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006).
    [CrossRef] [PubMed]
  29. Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci.56(2), 139–174 (2011).
    [CrossRef] [PubMed]
  30. T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011).
    [CrossRef] [PubMed]

2012 (1)

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 030502 (2012).
[CrossRef]

2011 (8)

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci.56(2), 139–174 (2011).
[CrossRef] [PubMed]

Q. Wei, T. Liu, S. Jiao, and H. F. Zhang, “Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy,” J. Mod. Opt.58(21), 1997–2001 (2011).
[CrossRef]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

J. J. Hunter, B. Masella, A. Dubra, R. Sharma, L. Yin, W. H. Merigan, G. Palczewska, K. Palczewski, and D. R. Williams, “Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy,” Biomed. Opt. Express2(1), 139–148 (2011).
[CrossRef] [PubMed]

T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011).
[CrossRef] [PubMed]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express2(5), 1359–1365 (2011).
[CrossRef] [PubMed]

2010 (5)

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express1(1), 176–185 (2010).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina30(1), 6–15 (2010).
[CrossRef] [PubMed]

2007 (3)

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

2006 (4)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci.47(8), 3556–3564 (2006).
[CrossRef] [PubMed]

J. W. You, T. C. Chen, M. Mujat, B. H. Park, and J. F. de Boer, “Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging,” Opt. Express14(15), 6739–6748 (2006).
[CrossRef] [PubMed]

S. Moon and D. Y. Kim, “Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source,” Opt. Express14(24), 11575–11584 (2006).
[CrossRef] [PubMed]

2005 (2)

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005).
[CrossRef] [PubMed]

M. Kinnunen and R. Myllylä, “Effect of glucose on photoacoustic signals at the wavelengths of 1064 and 532-nm in pig blood and Intralipid,” J. Phys. D Appl. Phys.38(15), 2654–2661 (2005).
[CrossRef]

2003 (1)

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology110(1), 15–21, quiz 22–23 (2003).
[CrossRef] [PubMed]

1995 (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40(6), 963–978 (1995).
[CrossRef] [PubMed]

1990 (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

1979 (1)

A. Hughes and H. Wässle, “An estimate of image quality in the rat eye,” Invest. Ophthalmol. Vis. Sci.18(8), 878–881 (1979).
[PubMed]

An, L.

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

Bille, J. F.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Bindewald-Wittich, A.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Bradley, A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Brinkmann, C. K.

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

Burke, J. M.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

Chen, S. L.

Chen, T. C.

de Boer, J. F.

Delori, F. C.

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci.47(8), 3556–3564 (2006).
[CrossRef] [PubMed]

Dubra, A.

Faber, D. J.

Fawzi, A.

Fleckenstein, M.

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

Giese, G.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Gregori, G.

Guo, L. J.

Hamilton, P.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology110(1), 15–21, quiz 22–23 (2003).
[CrossRef] [PubMed]

Hammer, M.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40(6), 963–978 (1995).
[CrossRef] [PubMed]

Han, M.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Holz, F. G.

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Hu, J.

Hu, S.

Huang, X.

Hughes, A.

A. Hughes and H. Wässle, “An estimate of image quality in the rat eye,” Invest. Ophthalmol. Vis. Sci.18(8), 878–881 (1979).
[PubMed]

Hunter, J. J.

Jiang, M.

Jiao, S.

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 030502 (2012).
[CrossRef]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express2(5), 1359–1365 (2011).
[CrossRef] [PubMed]

Q. Wei, T. Liu, S. Jiao, and H. F. Zhang, “Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy,” J. Mod. Opt.58(21), 1997–2001 (2011).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express13(2), 444–452 (2005).
[CrossRef] [PubMed]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

Kalkman, J.

Keilhauer, C. N.

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci.47(8), 3556–3564 (2006).
[CrossRef] [PubMed]

Kellner, S.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina30(1), 6–15 (2010).
[CrossRef] [PubMed]

Kellner, U.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina30(1), 6–15 (2010).
[CrossRef] [PubMed]

Kim, D. Y.

Kinnunen, M.

M. Kinnunen and R. Myllylä, “Effect of glucose on photoacoustic signals at the wavelengths of 1064 and 532-nm in pig blood and Intralipid,” J. Phys. D Appl. Phys.38(15), 2654–2661 (2005).
[CrossRef]

Knighton, R.

Kodach, V. M.

Kuai, D.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

Lau, S.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci.56(2), 139–174 (2011).
[CrossRef] [PubMed]

Lim, J. I.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology110(1), 15–21, quiz 22–23 (2003).
[CrossRef] [PubMed]

Ling, T.

Liu, T.

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express2(5), 1359–1365 (2011).
[CrossRef] [PubMed]

Q. Wei, T. Liu, S. Jiao, and H. F. Zhang, “Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy,” J. Mod. Opt.58(21), 1997–2001 (2011).
[CrossRef]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

Masella, B.

Maslov, K.

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Maslov, K. I.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Merigan, W. H.

Moon, S.

Mujat, M.

Müller, G.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40(6), 963–978 (1995).
[CrossRef] [PubMed]

Myllylä, R.

M. Kinnunen and R. Myllylä, “Effect of glucose on photoacoustic signals at the wavelengths of 1064 and 532-nm in pig blood and Intralipid,” J. Phys. D Appl. Phys.38(15), 2654–2661 (2005).
[CrossRef]

Niemz, M. H.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Palczewska, G.

Palczewski, K.

Park, B. H.

Puliafito, C.

Puliafito, C. A.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

Rao, B.

Roggan, A.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40(6), 963–978 (1995).
[CrossRef] [PubMed]

Schmitz-Valckenberg, S.

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Schweitzer, D.

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40(6), 963–978 (1995).
[CrossRef] [PubMed]

Sharma, R.

Shung, K. K.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci.56(2), 139–174 (2011).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

Song, W.

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

Stanga, P. E.

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology110(1), 15–21, quiz 22–23 (2003).
[CrossRef] [PubMed]

Steinberg, J. S.

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Visvalingam, S.

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

Wang, J.

Wang, L. V.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

S. Hu, B. Rao, K. Maslov, and L. V. Wang, “Label-free photoacoustic ophthalmic angiography,” Opt. Lett.35(1), 1–3 (2010).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Wang, R. K.

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

Wässle, H.

A. Hughes and H. Wässle, “An estimate of image quality in the rat eye,” Invest. Ophthalmol. Vis. Sci.18(8), 878–881 (1979).
[PubMed]

Wei, Q.

Q. Wei, T. Liu, S. Jiao, and H. F. Zhang, “Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy,” J. Mod. Opt.58(21), 1997–2001 (2011).
[CrossRef]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express2(5), 1359–1365 (2011).
[CrossRef] [PubMed]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

Weinitz, S.

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina30(1), 6–15 (2010).
[CrossRef] [PubMed]

Williams, D. R.

Wu, D.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci.56(2), 139–174 (2011).
[CrossRef] [PubMed]

Xia, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Yao, J.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Yin, L.

You, J. W.

Yu, J.

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

Zhang, H. F.

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 030502 (2012).
[CrossRef]

T. Liu, Q. Wei, J. Wang, S. Jiao, and H. F. Zhang, “Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen,” Biomed. Opt. Express2(5), 1359–1365 (2011).
[CrossRef] [PubMed]

Q. Wei, T. Liu, S. Jiao, and H. F. Zhang, “Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy,” J. Mod. Opt.58(21), 1997–2001 (2011).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

Zhang, X.

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 030502 (2012).
[CrossRef]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Zhang, Y.

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

Zhou, Q.

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci.56(2), 139–174 (2011).
[CrossRef] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

Inverse Probl. (1)

K. Maslov, H. F. Zhang, and L. V. Wang, “Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo,” Inverse Probl.23(6), S113–S122 (2007).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (2)

C. N. Keilhauer and F. C. Delori, “Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin,” Invest. Ophthalmol. Vis. Sci.47(8), 3556–3564 (2006).
[CrossRef] [PubMed]

A. Hughes and H. Wässle, “An estimate of image quality in the rat eye,” Invest. Ophthalmol. Vis. Sci.18(8), 878–881 (1979).
[PubMed]

J. Biomed. Opt. (6)

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

J. Yao, K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “Label-free oxygen-metabolic photoacoustic microscopy in vivo,” J. Biomed. Opt.16(7), 076003 (2011).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

W. Song, Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, “Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform,” J. Biomed. Opt. (to be published).

M. Han, G. Giese, S. Schmitz-Valckenberg, A. Bindewald-Wittich, F. G. Holz, J. Yu, J. F. Bille, and M. H. Niemz, “Age-related structural abnormalities in the human retina-choroid complex revealed by two-photon excited autofluorescence imaging,” J. Biomed. Opt.12(2), 024012 (2007).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy: accomplishing optical coherence tomography and photoacoustic microscopy with a single light source,” J. Biomed. Opt.17(3), 030502 (2012).
[CrossRef]

J. Mod. Opt. (1)

Q. Wei, T. Liu, S. Jiao, and H. F. Zhang, “Image chorioretinal vasculature in albino rats using photoacoustic ophthalmoscopy,” J. Mod. Opt.58(21), 1997–2001 (2011).
[CrossRef]

J. Phys. D Appl. Phys. (1)

M. Kinnunen and R. Myllylä, “Effect of glucose on photoacoustic signals at the wavelengths of 1064 and 532-nm in pig blood and Intralipid,” J. Phys. D Appl. Phys.38(15), 2654–2661 (2005).
[CrossRef]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Protoc. (1)

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

Ophthalmology (2)

P. E. Stanga, J. I. Lim, and P. Hamilton, “Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update,” Ophthalmology110(1), 15–21, quiz 22–23 (2003).
[CrossRef] [PubMed]

S. Schmitz-Valckenberg, J. S. Steinberg, M. Fleckenstein, S. Visvalingam, C. K. Brinkmann, and F. G. Holz, “Combined confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography imaging of reticular drusen associated with age-related macular degeneration,” Ophthalmology117(6), 1169–1176 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Med. Biol. (1)

M. Hammer, A. Roggan, D. Schweitzer, and G. Müller, “Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation,” Phys. Med. Biol.40(6), 963–978 (1995).
[CrossRef] [PubMed]

Prog. Mater. Sci. (1)

Q. Zhou, S. Lau, D. Wu, and K. K. Shung, “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications,” Prog. Mater. Sci.56(2), 139–174 (2011).
[CrossRef] [PubMed]

Retina (1)

U. Kellner, S. Kellner, and S. Weinitz, “Fundus autofluorescence (488 NM) and near-infrared autofluorescence (787 NM) visualize different retinal pigment epithelium alterations in patients with age-related macular degeneration,” Retina30(1), 6–15 (2010).
[CrossRef] [PubMed]

Vision Res. (1)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Other (2)

S. L. Jacques, “Melanosome absorption coefficient,” http://omlc.ogi.edu/spectra/melanin/mua.html .

American National Standards Institute (ANSI), “American national standard for the safe use of lasers,” Standard Z136.1–2007 (Laser Institute of America, Orlando, FL, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the dual-wavelength PAOM guided by SD-OCT. PD: photodiode; DM: dichroic mirror; GM: 2D galvanometer mirrors; AMP: amplifier; UT: ultrasonic transducer; AO: analogous output board; SLD: super-luminescent laser diode; Ref: OCT reference arm; 2 × 2: 50:50 fiber coupler; L1: relay lens; L2: objective lens; LLM: laser line mirror.

Fig. 2
Fig. 2

Comparison of visible and NIR light PAOM images. (a) and (b) are in vivo images acquired at 532 nm and 1064 nm in a pigmented rat, respectively; (c) and (d) are in vivo images acquired at 532 nm and 1064 nm in an albino rat, respectively. Bar: 250 µm.

Fig. 3
Fig. 3

Comparison of visible and NIR PAOM B-scan images. (a) and (b) are images acquired at 532-nm and 1064-nm in a pigmented rat, respectively; (c) and (d) are images acquired at 532-nm and 1064-nm in an albino rat, respectively. Bar: 250 µm.

Fig. 4
Fig. 4

Comparison of PA amplitudes from retinal vessels and RPE/choroid complex when illuminated by visible and NIR light in a pigmented rat eye.

Metrics