A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter 7, 2042–2051 (2011).
[Crossref]
S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc. 42, 1215–1221 (2011).
[Crossref]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one 5, e10427 (2010).
[Crossref]
[PubMed]
S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96, 209–216 (2009).
[Crossref]
R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol. 1, 43–52 (2009).
[Crossref]
Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol. 5, 036007 (2008).
[Crossref]
[PubMed]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem 387, 1691–1703 (2007).
[Crossref]
K. Chen, Y. Oin, F. Zheng, M. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett. 31, 2015–2017 (2006).
[Crossref]
[PubMed]
J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J 90, 648–656 (2006).
[Crossref]
S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871–1877 (2006).
[Crossref]
J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]
X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290–3292 (2005).
[PubMed]
C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun. 245, 465–470 (2005).
[Crossref]
J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology 1, 169–180 (2004).
M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259–2280 (2003).
[Crossref]
G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]
[PubMed]
B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33, 517–523 (2002).
[Crossref]
B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539, 58–70 (2001).
[Crossref]
[PubMed]
G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81, 43–56 (2001).
[Crossref]
[PubMed]
S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J. 76, 1145–1151 (1999).
[Crossref]
[PubMed]
S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc. 118, 12,638–12,646 (1996).
[Crossref]
S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc. 24, 275–279 (1993).
[Crossref]
S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol. 49, 177–192 (1987).
[Crossref]
[PubMed]
A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J. 39, 23–32 (1982).
[Crossref]
[PubMed]
V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem. 255, 2540–2548 (1980).
[PubMed]
N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry 16, 5585–5592 (1977).
[Crossref]
[PubMed]
S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes 375, 422–433 (1975).
[Crossref]
[PubMed]
J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta 382, 51–57 (1975).
[Crossref]
[PubMed]
D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta 382, 542–551 (1975).
[Crossref]
[PubMed]
E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13, 941–954 (1973).
[Crossref]
[PubMed]
C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).
[Crossref]
B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem. 148, 173–183 (1943).
S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc. 42, 1215–1221 (2011).
[Crossref]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96, 209–216 (2009).
[Crossref]
A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one 5, e10427 (2010).
[Crossref]
[PubMed]
G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]
[PubMed]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem. 255, 2540–2548 (1980).
[PubMed]
S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes 375, 422–433 (1975).
[Crossref]
[PubMed]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter 7, 2042–2051 (2011).
[Crossref]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem 387, 1691–1703 (2007).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J 90, 648–656 (2006).
[Crossref]
A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one 5, e10427 (2010).
[Crossref]
[PubMed]
S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol. 49, 177–192 (1987).
[Crossref]
[PubMed]
A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J. 39, 23–32 (1982).
[Crossref]
[PubMed]
Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter 7, 2042–2051 (2011).
[Crossref]
Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol. 5, 036007 (2008).
[Crossref]
[PubMed]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96, 209–216 (2009).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun. 245, 465–470 (2005).
[Crossref]
J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology 1, 169–180 (2004).
M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259–2280 (2003).
[Crossref]
J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]
X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290–3292 (2005).
[PubMed]
E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13, 941–954 (1973).
[Crossref]
[PubMed]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol. 1, 43–52 (2009).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes 375, 422–433 (1975).
[Crossref]
[PubMed]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81, 43–56 (2001).
[Crossref]
[PubMed]
S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J. 76, 1145–1151 (1999).
[Crossref]
[PubMed]
R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol. 1, 43–52 (2009).
[Crossref]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc. 24, 275–279 (1993).
[Crossref]
J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta 382, 51–57 (1975).
[Crossref]
[PubMed]
S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96, 209–216 (2009).
[Crossref]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol. 1, 43–52 (2009).
[Crossref]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81, 43–56 (2001).
[Crossref]
[PubMed]
S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J. 76, 1145–1151 (1999).
[Crossref]
[PubMed]
B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem. 148, 173–183 (1943).
S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc. 118, 12,638–12,646 (1996).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J 90, 648–656 (2006).
[Crossref]
S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc. 24, 275–279 (1993).
[Crossref]
Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter 7, 2042–2051 (2011).
[Crossref]
Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol. 5, 036007 (2008).
[Crossref]
[PubMed]
S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc. 24, 275–279 (1993).
[Crossref]
J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J 90, 648–656 (2006).
[Crossref]
G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81, 43–56 (2001).
[Crossref]
[PubMed]
S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J. 76, 1145–1151 (1999).
[Crossref]
[PubMed]
J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]
M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259–2280 (2003).
[Crossref]
J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology 1, 169–180 (2004).
J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta 382, 51–57 (1975).
[Crossref]
[PubMed]
S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc. 24, 275–279 (1993).
[Crossref]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc. 42, 1215–1221 (2011).
[Crossref]
A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one 5, e10427 (2010).
[Crossref]
[PubMed]
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem 387, 1691–1703 (2007).
[Crossref]
B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33, 517–523 (2002).
[Crossref]
B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539, 58–70 (2001).
[Crossref]
[PubMed]
J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta 382, 51–57 (1975).
[Crossref]
[PubMed]
J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology 1, 169–180 (2004).
S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc. 42, 1215–1221 (2011).
[Crossref]
S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes 375, 422–433 (1975).
[Crossref]
[PubMed]
I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004).
[Crossref]
[PubMed]
I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004).
[Crossref]
[PubMed]
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem 387, 1691–1703 (2007).
[Crossref]
S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc. 42, 1215–1221 (2011).
[Crossref]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96, 209–216 (2009).
[Crossref]
C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun. 245, 465–470 (2005).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem 387, 1691–1703 (2007).
[Crossref]
J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology 1, 169–180 (2004).
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry 16, 5585–5592 (1977).
[Crossref]
[PubMed]
S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc. 42, 1215–1221 (2011).
[Crossref]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96, 209–216 (2009).
[Crossref]
C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).
[Crossref]
A. C. Rencher, Methods of Multivariate Analysis (Wiley, 2002).
[Crossref]
G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81, 43–56 (2001).
[Crossref]
[PubMed]
S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J. 76, 1145–1151 (1999).
[Crossref]
[PubMed]
S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes 375, 422–433 (1975).
[Crossref]
[PubMed]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry 16, 5585–5592 (1977).
[Crossref]
[PubMed]
G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81, 43–56 (2001).
[Crossref]
[PubMed]
C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun. 245, 465–470 (2005).
[Crossref]
A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J. 39, 23–32 (1982).
[Crossref]
[PubMed]
S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc. 118, 12,638–12,646 (1996).
[Crossref]
R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol. 1, 43–52 (2009).
[Crossref]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc. 118, 12,638–12,646 (1996).
[Crossref]
V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem. 255, 2540–2548 (1980).
[PubMed]
A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J. 39, 23–32 (1982).
[Crossref]
[PubMed]
S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871–1877 (2006).
[Crossref]
J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology 1, 169–180 (2004).
G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]
[PubMed]
M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259–2280 (2003).
[Crossref]
B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539, 58–70 (2001).
[Crossref]
[PubMed]
J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J 90, 648–656 (2006).
[Crossref]
S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes 375, 422–433 (1975).
[Crossref]
[PubMed]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J. 39, 23–32 (1982).
[Crossref]
[PubMed]
A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one 5, e10427 (2010).
[Crossref]
[PubMed]
D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta 382, 542–551 (1975).
[Crossref]
[PubMed]
D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta 382, 542–551 (1975).
[Crossref]
[PubMed]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]
S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc. 24, 275–279 (1993).
[Crossref]
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem 387, 1691–1703 (2007).
[Crossref]
B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33, 517–523 (2002).
[Crossref]
B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539, 58–70 (2001).
[Crossref]
[PubMed]
X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290–3292 (2005).
[PubMed]
N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry 16, 5585–5592 (1977).
[Crossref]
[PubMed]
Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol. 5, 036007 (2008).
[Crossref]
[PubMed]
Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter 7, 2042–2051 (2011).
[Crossref]
Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol. 5, 036007 (2008).
[Crossref]
[PubMed]
A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one 5, e10427 (2010).
[Crossref]
[PubMed]
X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290–3292 (2005).
[PubMed]
J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]
X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290–3292 (2005).
[PubMed]
X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290–3292 (2005).
[PubMed]
J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J 90, 648–656 (2006).
[Crossref]
B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem 387, 1691–1703 (2007).
[Crossref]
S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol. 49, 177–192 (1987).
[Crossref]
[PubMed]
S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett. 96, 213701 (2010).
[Crossref]
N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry 16, 5585–5592 (1977).
[Crossref]
[PubMed]
B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta 1539, 58–70 (2001).
[Crossref]
[PubMed]
J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta 382, 51–57 (1975).
[Crossref]
[PubMed]
D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta 382, 542–551 (1975).
[Crossref]
[PubMed]
S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes 375, 422–433 (1975).
[Crossref]
[PubMed]
J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J 90, 648–656 (2006).
[Crossref]
S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J. 96, 209–216 (2009).
[Crossref]
S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J. 76, 1145–1151 (1999).
[Crossref]
[PubMed]
E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J. 13, 941–954 (1973).
[Crossref]
[PubMed]
A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J. 39, 23–32 (1982).
[Crossref]
[PubMed]
G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J. 81, 43–56 (2001).
[Crossref]
[PubMed]
R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol. 1, 43–52 (2009).
[Crossref]
S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc. 118, 12,638–12,646 (1996).
[Crossref]
B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem. 148, 173–183 (1943).
V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem. 255, 2540–2548 (1980).
[PubMed]
T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt. 13, 1–12 (2008).
[Crossref]
S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res. 21, 1871–1877 (2006).
[Crossref]
M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids 51, 2259–2280 (2003).
[Crossref]
A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt. 13, 044012 (2011).
[Crossref]
S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc. 24, 275–279 (1993).
[Crossref]
B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc. 33, 517–523 (2002).
[Crossref]
S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc. 42, 1215–1221 (2011).
[Crossref]
J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36, 257–261 (2005).
[Crossref]
J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology 1, 169–180 (2004).
G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater. 2, 715–725 (2003).
[Crossref]
[PubMed]
C. H. Reinsch, “Smoothing by spline functions,” Numer. Math. 10, 177–183 (1967).
[Crossref]
C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun. 245, 465–470 (2005).
[Crossref]
Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol. 5, 036007 (2008).
[Crossref]
[PubMed]
A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one 5, e10427 (2010).
[Crossref]
[PubMed]
Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter 7, 2042–2051 (2011).
[Crossref]
X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol. 11, 3290–3292 (2005).
[PubMed]
A. C. Rencher, Methods of Multivariate Analysis (Wiley, 2002).
[Crossref]
I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004).
[Crossref]
[PubMed]