Abstract

Two microparticles were biochemically attached to a red blood cell at diametrically opposite parts and held by optical traps allowing to impose deformations. The cell deformation was monitored from the microscopy images. Raman spectra of the cell under tunable deformations were studied. Vibrational spectra analysis at different stretching states was supported with two statistical methods. Principal Component Analysis distinguishes the most prominent changes in spectra while 2D correlation technique monitors the evolution of Raman bands during stretching. The measurements show significant changes in the cell chemical structure with stretching however the changes saturate above 20% of cell deformation. Mechanical deformation of the cell mainly affects the bands corresponding to hemoglobin but contributions from spectrin and membrane proteins can not be excluded. The saturation of bands at higher deformations suggests some structural relaxation that RBC has to undergo to bear extra load. The results confirm widely accepted belief that spectrin released from membrane proteins allows for significant shape changes of the cells. We therefore tentatively suggest that interaction between membrane and cytoskeleton during deformation can be efficiently probed by confocal Raman spectroscopy, in particular via the peak around 1035 cm−1.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J.13, 941–954 (1973).
    [CrossRef] [PubMed]
  2. A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982).
    [CrossRef] [PubMed]
  3. S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol.49, 177–192 (1987).
    [CrossRef] [PubMed]
  4. S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999).
    [CrossRef] [PubMed]
  5. M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51, 2259–2280 (2003).
    [CrossRef]
  6. J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).
  7. A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
    [CrossRef]
  8. G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
    [CrossRef] [PubMed]
  9. Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011).
    [CrossRef]
  10. G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater.2, 715–725 (2003).
    [CrossRef] [PubMed]
  11. S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res.21, 1871–1877 (2006).
    [CrossRef]
  12. J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta382, 51–57 (1975).
    [CrossRef] [PubMed]
  13. D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta382, 542–551 (1975).
    [CrossRef] [PubMed]
  14. S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
    [CrossRef]
  15. B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
    [CrossRef]
  16. R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009).
    [CrossRef]
  17. A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
    [CrossRef] [PubMed]
  18. T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
    [CrossRef]
  19. K. Chen, Y. Oin, F. Zheng, M. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett.31, 2015–2017 (2006).
    [CrossRef] [PubMed]
  20. J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
    [CrossRef]
  21. J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005).
    [CrossRef]
  22. S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
    [CrossRef]
  23. Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008).
    [CrossRef] [PubMed]
  24. C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun.245, 465–470 (2005).
    [CrossRef]
  25. S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
    [CrossRef]
  26. C. H. Reinsch, “Smoothing by spline functions,” Numer. Math.10, 177–183 (1967).
    [CrossRef]
  27. A. C. Rencher, Methods of Multivariate Analysis (Wiley, 2002).
    [CrossRef]
  28. I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004).
    [CrossRef] [PubMed]
  29. S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
    [CrossRef]
  30. B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta1539, 58–70 (2001).
    [CrossRef] [PubMed]
  31. B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc.33, 517–523 (2002).
    [CrossRef]
  32. X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
    [PubMed]
  33. S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc.118, 12,638–12,646 (1996).
    [CrossRef]
  34. N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry16, 5585–5592 (1977).
    [CrossRef] [PubMed]
  35. S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
    [CrossRef] [PubMed]
  36. B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem.148, 173–183 (1943).
  37. V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem.255, 2540–2548 (1980).
    [PubMed]

2011 (3)

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011).
[CrossRef]

S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
[CrossRef]

2010 (2)

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
[CrossRef] [PubMed]

2009 (2)

S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
[CrossRef]

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009).
[CrossRef]

2008 (2)

Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008).
[CrossRef] [PubMed]

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

2007 (1)

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
[CrossRef]

2006 (3)

K. Chen, Y. Oin, F. Zheng, M. Sun, and D. Shi, “Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells,” Opt. Lett.31, 2015–2017 (2006).
[CrossRef] [PubMed]

J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
[CrossRef]

S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res.21, 1871–1877 (2006).
[CrossRef]

2005 (3)

J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005).
[CrossRef]

X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
[PubMed]

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun.245, 465–470 (2005).
[CrossRef]

2004 (1)

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).

2003 (2)

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51, 2259–2280 (2003).
[CrossRef]

G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater.2, 715–725 (2003).
[CrossRef] [PubMed]

2002 (1)

B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc.33, 517–523 (2002).
[CrossRef]

2001 (2)

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta1539, 58–70 (2001).
[CrossRef] [PubMed]

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
[CrossRef] [PubMed]

1999 (1)

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999).
[CrossRef] [PubMed]

1996 (1)

S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc.118, 12,638–12,646 (1996).
[CrossRef]

1993 (1)

S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
[CrossRef]

1987 (1)

S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol.49, 177–192 (1987).
[CrossRef] [PubMed]

1982 (1)

A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982).
[CrossRef] [PubMed]

1980 (1)

V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem.255, 2540–2548 (1980).
[PubMed]

1977 (1)

N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry16, 5585–5592 (1977).
[CrossRef] [PubMed]

1975 (3)

S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
[CrossRef] [PubMed]

J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta382, 51–57 (1975).
[CrossRef] [PubMed]

D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta382, 542–551 (1975).
[CrossRef] [PubMed]

1973 (1)

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J.13, 941–954 (1973).
[CrossRef] [PubMed]

1967 (1)

C. H. Reinsch, “Smoothing by spline functions,” Numer. Math.10, 177–183 (1967).
[CrossRef]

1943 (1)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem.148, 173–183 (1943).

Balint, S.

S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
[CrossRef]

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
[CrossRef]

Bankapur, A.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
[CrossRef] [PubMed]

Bao, G.

G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater.2, 715–725 (2003).
[CrossRef] [PubMed]

Barbosa, L. C.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Bennett, V.

V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem.255, 2540–2548 (1980).
[PubMed]

Bookchin, R.

S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
[CrossRef] [PubMed]

Brandao, M. M.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Brown, A. T.

Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011).
[CrossRef]

Brown, M. D.

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Campoy, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

Caspers, P.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
[CrossRef]

Castro, M. L. B.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Cesar, C. L.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Chan, J.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
[CrossRef]

Chen, K.

Chidangil, S.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
[CrossRef] [PubMed]

Chien, S.

S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol.49, 177–192 (1987).
[CrossRef] [PubMed]

A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982).
[CrossRef] [PubMed]

Cicuta, P.

Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011).
[CrossRef]

Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008).
[CrossRef] [PubMed]

Clarke, N. W.

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Cossins, B.

S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
[CrossRef]

Costa, F. F.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Creely, C. M.

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun.245, 465–470 (2005).
[CrossRef]

Dao, M.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51, 2259–2280 (2003).
[CrossRef]

Deng, J.

J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005).
[CrossRef]

Dong, R.

X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
[PubMed]

Evans, E. A.

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J.13, 941–954 (1973).
[CrossRef] [PubMed]

Faria, E.

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Faria, E. C.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009).
[CrossRef]

Fernandes, H. P.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Fischer, S.

S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
[CrossRef] [PubMed]

Fons, C. B.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

Fontes, A.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Gallet, F.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
[CrossRef] [PubMed]

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999).
[CrossRef] [PubMed]

Gardner, P.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009).
[CrossRef]

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Gazi, E.

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Goheen, S. C.

S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
[CrossRef]

Gorczyca, L. E.

J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta382, 51–57 (1975).
[CrossRef] [PubMed]

Guallar, V.

S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
[CrossRef]

Harvey, T.

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Harvey, T. J.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009).
[CrossRef]

Henderson, A.

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Henon, S.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
[CrossRef] [PubMed]

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999).
[CrossRef] [PubMed]

Horecker, B. L.

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem.148, 173–183 (1943).

Hu, S.

S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc.118, 12,638–12,646 (1996).
[CrossRef]

Huruta, R. R.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Ihara, K.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
[CrossRef]

Kaufman, J. W.

S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
[CrossRef]

Kotar, J.

Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011).
[CrossRef]

Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008).
[CrossRef] [PubMed]

Kucuk, O.

S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
[CrossRef]

Lane, S.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
[CrossRef]

Lenormand, G.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
[CrossRef] [PubMed]

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999).
[CrossRef] [PubMed]

Li, Y.

J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005).
[CrossRef]

Lim, C.

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51, 2259–2280 (2003).
[CrossRef]

Lim, C. T.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).

Lippert, J. L.

J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta382, 51–57 (1975).
[CrossRef] [PubMed]

Lis, L. J.

S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
[CrossRef]

Llagostera, M.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

Marro, M.

S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
[CrossRef]

Mathur, D.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
[CrossRef] [PubMed]

McNaughton, D.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
[CrossRef]

B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc.33, 517–523 (2002).
[CrossRef]

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta1539, 58–70 (2001).
[CrossRef] [PubMed]

Meiklejohn, G.

J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta382, 51–57 (1975).
[CrossRef] [PubMed]

Mills, J. P.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).

Miskovsky, P.

S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
[CrossRef]

Nagel, R.

S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
[CrossRef] [PubMed]

Noda, I.

I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004).
[CrossRef] [PubMed]

Oin, Y.

Ozaki, Y.

I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004).
[CrossRef] [PubMed]

Pandiancherri, S.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
[CrossRef]

Petrov, D.

S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
[CrossRef]

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
[CrossRef]

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun.245, 465–470 (2005).
[CrossRef]

Pozzo, L. Y.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Puppels, G. J.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
[CrossRef]

Qie, L.

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).

Raj, S.

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

Ranney, H.

N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry16, 5585–5592 (1977).
[CrossRef] [PubMed]

Rao, S.

S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
[CrossRef]

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
[CrossRef]

Reinsch, C. H.

C. H. Reinsch, “Smoothing by spline functions,” Numer. Math.10, 177–183 (1967).
[CrossRef]

Rencher, A. C.

A. C. Rencher, Methods of Multivariate Analysis (Wiley, 2002).
[CrossRef]

Richert, A.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
[CrossRef] [PubMed]

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999).
[CrossRef] [PubMed]

Roth, E. J.

S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
[CrossRef] [PubMed]

Saad, S. T. O.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Shaklai, N.

N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry16, 5585–5592 (1977).
[CrossRef] [PubMed]

Shi, D.

Simeon, J.

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
[CrossRef] [PubMed]

Singh, G. P.

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun.245, 465–470 (2005).
[CrossRef]

Skalak, R.

A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982).
[CrossRef] [PubMed]

Smith, K.

S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc.118, 12,638–12,646 (1996).
[CrossRef]

Snook, R. D.

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009).
[CrossRef]

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Spiro, T.

S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc.118, 12,638–12,646 (1996).
[CrossRef]

Stenbuck, P. J.

V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem.255, 2540–2548 (1980).
[PubMed]

Sun, M.

Sung, K.-L. P.

A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982).
[CrossRef] [PubMed]

Suresh, S.

S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res.21, 1871–1877 (2006).
[CrossRef]

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).

G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater.2, 715–725 (2003).
[CrossRef] [PubMed]

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51, 2259–2280 (2003).
[CrossRef]

Tait, B.

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta1539, 58–70 (2001).
[CrossRef] [PubMed]

Taylor, D.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
[CrossRef]

Tellez-Nagel, I.

S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
[CrossRef] [PubMed]

Thomaz, A. A.

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

Tozeren, A.

A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982).
[CrossRef] [PubMed]

Valiathan, M.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
[CrossRef] [PubMed]

Verma, S. P.

D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta382, 542–551 (1975).
[CrossRef] [PubMed]

Wallach, D. F. H.

D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta382, 542–551 (1975).
[CrossRef] [PubMed]

Ward, A.

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

Wei, Q.

J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005).
[CrossRef]

Westerman, M. P.

S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
[CrossRef]

Wood, B. R.

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
[CrossRef]

B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc.33, 517–523 (2002).
[CrossRef]

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta1539, 58–70 (2001).
[CrossRef] [PubMed]

Yan, X.

X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
[PubMed]

Yguerabide, J.

N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry16, 5585–5592 (1977).
[CrossRef] [PubMed]

Yoon, G.

Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008).
[CrossRef] [PubMed]

Yoon, Y. Z.

Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011).
[CrossRef]

Yoon, Y.-Z.

Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008).
[CrossRef] [PubMed]

Zachariah, E.

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
[CrossRef] [PubMed]

Zhang, L.

X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
[PubMed]

Zhang, M.

J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005).
[CrossRef]

Zhang, X.

X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
[PubMed]

Zhang, Z.

X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
[PubMed]

Zheng, F.

Zwerdling, T.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
[CrossRef]

Anal. Bioanal. Chem (1)

B. R. Wood, P. Caspers, G. J. Puppels, S. Pandiancherri, and D. McNaughton, “Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation,” Anal. Bioanal. Chem387, 1691–1703 (2007).
[CrossRef]

Annu. Rev. Physiol. (1)

S. Chien, “Red cell deformability and its relevance to blood flow,” Annu. Rev. Physiol.49, 177–192 (1987).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. Rao, S. Raj, S. Balint, C. B. Fons, S. Campoy, M. Llagostera, and D. Petrov, “Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering,” Appl. Phys. Lett.96, 213701 (2010).
[CrossRef]

Biochemistry (1)

N. Shaklai, J. Yguerabide, and H. Ranney, “Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore,” Biochemistry16, 5585–5592 (1977).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (3)

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochim. Biophys. Acta1539, 58–70 (2001).
[CrossRef] [PubMed]

J. L. Lippert, L. E. Gorczyca, and G. Meiklejohn, “A laser Raman spectroscopic investigation of phospholipid and protein configurations in hemoglobin-free erythrocyte ghosts,” Biochim. Biophys. Acta382, 51–57 (1975).
[CrossRef] [PubMed]

D. F. H. Wallach and S. P. Verma, “Raman and resonance-Raman scattering by erythrocyte ghosts,” Biochim. Biophys. Acta382, 542–551 (1975).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (BBA)—Biomembranes (1)

S. Fischer, R. Nagel, R. Bookchin, E. J. Roth, and I. Tellez-Nagel, “The binding of hemoglobin to membranes of normal and sickle erythrocytes,” Biochim. Biophys. Acta (BBA)—Biomembranes375, 422–433 (1975).
[CrossRef] [PubMed]

Biophys. J (1)

J. Chan, D. Taylor, T. Zwerdling, S. Lane, and K. Ihara, “Micro-Raman Spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J90, 648–656 (2006).
[CrossRef]

Biophys. J. (5)

S. Rao, S. Balint, B. Cossins, V. Guallar, and D. Petrov, “Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers,” Biophys. J.96, 209–216 (2009).
[CrossRef]

S. Henon, G. Lenormand, A. Richert, and F. Gallet, “A new determination of the shear modulus of the human erythrocyte membrane using optical tweezer,” Biophys. J.76, 1145–1151 (1999).
[CrossRef] [PubMed]

E. A. Evans, “New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells,” Biophys. J.13, 941–954 (1973).
[CrossRef] [PubMed]

A. Tozeren, R. Skalak, K.-L. P. Sung, and S. Chien, “Viscoelastic behavior of erythrocyte membrane,” Biophys. J.39, 23–32 (1982).
[CrossRef] [PubMed]

G. Lenormand, S. Henon, A. Richert, J. Simeon, and F. Gallet, “Direct Measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton,” Biophys. J.81, 43–56 (2001).
[CrossRef] [PubMed]

Integr. Biol. (1)

R. D. Snook, T. J. Harvey, E. C. Faria, and P. Gardner, “Raman tweezers and their application to the study of singly trapped eukaryotic cells,” Integr. Biol.1, 43–52 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Hu, K. Smith, and T. Spiro, “Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin,” J. Am. Chem. Soc.118, 12,638–12,646 (1996).
[CrossRef]

J. Biol. Chem. (2)

B. L. Horecker, “The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red region,” J. Biol. Chem.148, 173–183 (1943).

V. Bennett and P. J. Stenbuck, “Human erythrocyte ankyrin. Purification and properties.” J. Biol. Chem.255, 2540–2548 (1980).
[PubMed]

J. Biomed. Opt. (1)

T. Harvey, E. Faria, A. Henderson, E. Gazi, A. Ward, N. W. Clarke, M. D. Brown, R. D. Snook, and P. Gardner, “Spectral discrimination of live prostate and bladder cancer cell lines using Raman optical tweezers,” J. Biomed. Opt.13, 1–12 (2008).
[CrossRef]

J. Mater. Res. (1)

S. Suresh, “Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships,” J. Mater. Res.21, 1871–1877 (2006).
[CrossRef]

J. Mech. Phys. Solids (1)

M. Dao, C. Lim, and S. Suresh, “Mechanics of the human red blood cell deformed by optical tweezers,” J. Mech. Phys. Solids51, 2259–2280 (2003).
[CrossRef]

J. Opt. (1)

A. Fontes, M. L. B. Castro, M. M. Brandao, H. P. Fernandes, A. A. Thomaz, R. R. Huruta, L. Y. Pozzo, L. C. Barbosa, F. F. Costa, S. T. O. Saad, and C. L. Cesar, “Mechanical and electrical properties of red blood cells using optical tweezers,” J. Opt.13, 044012 (2011).
[CrossRef]

J. Raman Spectrosc. (4)

S. C. Goheen, L. J. Lis, O. Kucuk, M. P. Westerman, and J. W. Kaufman, “Compositional dependence of spectral features in the Raman spectra of erythrocyte membranes,” J. Raman Spectrosc.24, 275–279 (1993).
[CrossRef]

B. R. Wood and D. McNaughton, “Raman excitation wavelength investigation of single red blood cells in vivo,” J. Raman Spectrosc.33, 517–523 (2002).
[CrossRef]

S. Balint, S. Rao, M. Marro, P. Miskovsky, and D. Petrov, “Monitoring of local pH in photodynamic therapy-treated live cancer cells using surface-enhanced Raman scattering probes,” J. Raman Spectrosc.42, 1215–1221 (2011).
[CrossRef]

J. Deng, Q. Wei, M. Zhang, and Y. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc.36, 257–261 (2005).
[CrossRef]

Mol. Cell. Biology (1)

J. P. Mills, L. Qie, M. Dao, C. T. Lim, and S. Suresh, “Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,” Mol. Cell. Biology1, 169–180 (2004).

Nat. Mater. (1)

G. Bao and S. Suresh, “Cell and molecular mechanics of biological materials,” Nat. Mater.2, 715–725 (2003).
[CrossRef] [PubMed]

Numer. Math. (1)

C. H. Reinsch, “Smoothing by spline functions,” Numer. Math.10, 177–183 (1967).
[CrossRef]

Opt. Commun. (1)

C. M. Creely, G. P. Singh, and D. Petrov, “Dual wavelength optical tweezers for confocal Raman spectroscopy,” Opt. Commun.245, 465–470 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Biol. (1)

Y.-Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, “Non-linear mechanical response of the red blood cell,” Phys. Biol.5, 036007 (2008).
[CrossRef] [PubMed]

PLoS one (1)

A. Bankapur, E. Zachariah, S. Chidangil, M. Valiathan, and D. Mathur, “Raman tweezers spectroscopy of live, single red and white blood cells,” PLoS one5, e10427 (2010).
[CrossRef] [PubMed]

Soft Matter (1)

Y. Z. Yoon, J. Kotar, A. T. Brown, and P. Cicuta, “Red blood cell dynamics: from spontaneous fluctuations to non-linear response,” Soft Matter7, 2042–2051 (2011).
[CrossRef]

World J. Gastroenterol. (1)

X. Yan, R. Dong, L. Zhang, X. Zhang, and Z. Zhang, “Raman spectra of single cell from gastrointestinal cancer patients,” World J. Gastroenterol.11, 3290–3292 (2005).
[PubMed]

Other (2)

A. C. Rencher, Methods of Multivariate Analysis (Wiley, 2002).
[CrossRef]

I. Noda and Y. Ozaki, Two-dimensional correlation spectroscopy— applications in vibrational and optical spectroscopy (Wiley, 2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

3D representation of Raman spectra of single RBC at 15 different cell deformations. Inset shows microscope image of RBC with the beads attached, at rest and stretched by 30%.

Fig. 2
Fig. 2

PCA and 2D correlation analysis of measured Raman spectra. Top:(a) Loading plot with threshold (dashed lines) estimated from experimental noise analysis. The inset demonstrates data used to define the threshold. (b) Scores plot showing overall intensity of all bands above the threshold with increasing cell deformation. Bottom: 2D correlation analysis for whole measured spectral window (synchronous map (c) and asynchronous map (d)). Cross correlation peaks can be seen in synchronous map indicating bands correlated during stretching.

Fig. 3
Fig. 3

Statistical analysis for Raman band at 991 cm−1. Top: PCA analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D correlation maps from Fig. 2 (synchronous map (c) and asynchronous map (d)).

Fig. 4
Fig. 4

Statistical analysis of Raman band at 1035 cm−1. Top: PCA analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D correlation maps from Fig. 2 (synchronous map (c) and asynchronous map (d)).

Fig. 5
Fig. 5

Statistical analysis for Raman band at 1083 cm−1. Top: PCA analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D correlation maps from Fig. 2 (synchronous map (c) and asynchronous map (d)).

Fig. 6
Fig. 6

Statistical analysis for Raman band at 1196 cm−1. Top: PCA analysis (loading plot (a) and scores plot (b)). Bottom: Expanded view of 2D correlation maps from Fig. 2 (synchronous map (c) and asynchronous map (d)).

Metrics