S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning3, 1–122 (2010).

[CrossRef]

M. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004).

[CrossRef]

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning3, 1–122 (2010).

[CrossRef]

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer-Verlag, Berlin, 2008).

[CrossRef]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning3, 1–122 (2010).

[CrossRef]

L. I. Rudin, S. Osher, and E. Fatemi, “An accurate algorithm for nonuniform fast Fourier transforms (NUFFTs),” IEEE Microwave Guided Wave Lett. 8, 18–20 (1998).

[CrossRef]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D: Nonlinear Phenomena60, 259–268 (1992).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer-Verlag, Berlin, 2008).

[CrossRef]

G. H. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, 1996).

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev.46, 443–454 (2004).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

Y. Huang, M. K. Ng, and Y. Wen, “A fast total variation minimization method for image restoration,” Multiscale Modeling & Simulat.7, 774–795 (2008).

[CrossRef]
[PubMed]

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniformly-spaced samples in Fourier domain optical coherence tomography,” Proc. SPIE8296, 829610 (2012).

[CrossRef]

J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt.50, H285–H296 (2011).

[CrossRef]
[PubMed]

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniform samples in spectral domain optical coherence tomography,” in Signal Recovery and Synthesis, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD2.

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniformly-spaced samples in Fourier domain optical coherence tomography,” Proc. SPIE8296, 829610 (2012).

[CrossRef]

J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt.50, H285–H296 (2011).

[CrossRef]
[PubMed]

X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A27, 1630–1637 (2010).

[CrossRef]

K. H. Y. Cheng, B. A. Standish, V. X. D. Yang, K. K. Y. Cheung, X. Gu, E. Y. Lam, and K. K. Y. Wong, “Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers,” Opt. Express18, 1909–1915 (2010).

[CrossRef]
[PubMed]

Z. Xu and E. Y. Lam, “Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging,” J. Opt. Soc. Am. A27, 1638–1646 (2010).

[CrossRef]

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt.48, H113–H119 (2009).

[CrossRef]
[PubMed]

X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express16, 17215–17226 (2008).

[CrossRef]
[PubMed]

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniform samples in spectral domain optical coherence tomography,” in Signal Recovery and Synthesis, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD2.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev.46, 443–454 (2004).

[CrossRef]

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

Y. Huang, M. K. Ng, and Y. Wen, “A fast total variation minimization method for image restoration,” Multiscale Modeling & Simulat.7, 774–795 (2008).

[CrossRef]
[PubMed]

L. I. Rudin, S. Osher, and E. Fatemi, “An accurate algorithm for nonuniform fast Fourier transforms (NUFFTs),” IEEE Microwave Guided Wave Lett. 8, 18–20 (1998).

[CrossRef]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D: Nonlinear Phenomena60, 259–268 (1992).

[CrossRef]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning3, 1–122 (2010).

[CrossRef]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning3, 1–122 (2010).

[CrossRef]

J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt.50, H285–H296 (2011).

[CrossRef]
[PubMed]

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt.48, H113–H119 (2009).

[CrossRef]
[PubMed]

X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express16, 17215–17226 (2008).

[CrossRef]
[PubMed]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

L. I. Rudin, S. Osher, and E. Fatemi, “An accurate algorithm for nonuniform fast Fourier transforms (NUFFTs),” IEEE Microwave Guided Wave Lett. 8, 18–20 (1998).

[CrossRef]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D: Nonlinear Phenomena60, 259–268 (1992).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

G. H. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, 1996).

Y. Huang, M. K. Ng, and Y. Wen, “A fast total variation minimization method for image restoration,” Multiscale Modeling & Simulat.7, 774–795 (2008).

[CrossRef]
[PubMed]

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49, D3–D60 (2010).

[CrossRef]

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

X. Zhang and E. Y. Lam, “Edge-preserving sectional image reconstruction in optical scanning holography,” J. Opt. Soc. Am. A27, 1630–1637 (2010).

[CrossRef]

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt.48, H113–H119 (2009).

[CrossRef]
[PubMed]

X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express16, 17215–17226 (2008).

[CrossRef]
[PubMed]

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniformly-spaced samples in Fourier domain optical coherence tomography,” Proc. SPIE8296, 829610 (2012).

[CrossRef]

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniform samples in spectral domain optical coherence tomography,” in Signal Recovery and Synthesis, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD2.

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49, D3–D60 (2010).

[CrossRef]

E. Y. Lam, X. Zhang, H. Vo, T.-C. Poon, and G. Indebetouw, “Three-dimensional microscopy and sectional image reconstruction using optical scanning holography,” Appl. Opt.48, H113–H119 (2009).

[CrossRef]
[PubMed]

Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt.49, 4756–4762 (2010).

[CrossRef]
[PubMed]

M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, and S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography,” Appl. Opt.50, 1158–1162 (2011).

[CrossRef]
[PubMed]

J. Ke, T.-C. Poon, and E. Y. Lam, “Depth resolution enhancement in optical scanning holography with a dual-wavelength laser source,” Appl. Opt.50, H285–H296 (2011).

[CrossRef]
[PubMed]

D. P. Popescu, L.-P. Choo-Smith, C. Flueraru, Y. Mao, S. Chang, J. Disano, S. Sherif, and M. G. Sowa, “Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications,” Biophys. Rev.3, 155–169 (2011).

[CrossRef]

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Found. Trends Mach. Learning3, 1–122 (2010).

[CrossRef]

L. I. Rudin, S. Osher, and E. Fatemi, “An accurate algorithm for nonuniform fast Fourier transforms (NUFFTs),” IEEE Microwave Guided Wave Lett. 8, 18–20 (1998).

[CrossRef]

A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vision20, 89–97 (2004).

[CrossRef]

Y. Huang, M. K. Ng, and Y. Wen, “A fast total variation minimization method for image restoration,” Multiscale Modeling & Simulat.7, 774–795 (2008).

[CrossRef]
[PubMed]

K. H. Y. Cheng, B. A. Standish, V. X. D. Yang, K. K. Y. Cheung, X. Gu, E. Y. Lam, and K. K. Y. Wong, “Wavelength-swept spectral and pulse shaping utilizing hybrid Fourier domain modelocking by fiber optical parametric and erbium-doped fiber amplifiers,” Opt. Express18, 1909–1915 (2010).

[CrossRef]
[PubMed]

K. Zhang and J. U. Kang, “Graphic processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18, 23472–23487 (2010).

[CrossRef]
[PubMed]

R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–893 (2003).

[CrossRef]
[PubMed]

S.-H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3μm wavelength,” Opt. Express11, 3598–3604 (2003).

[CrossRef]
[PubMed]

X. Zhang, E. Y. Lam, and T.-C. Poon, “Reconstruction of sectional images in holography using inverse imaging,” Opt. Express16, 17215–17226 (2008).

[CrossRef]
[PubMed]

K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express17, 12121–12131 (2009).

[CrossRef]
[PubMed]

T.-H. Tsai, B. Potsaid, M. F. Kraus, C. Zhou, Y. K. Tao, J. Hornegger, and J. G. Fujimoto, “Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography,” Opt. Express2, 2438–2448 (2011).

[CrossRef]

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Phys. D: Nonlinear Phenomena60, 259–268 (1992).

[CrossRef]

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniformly-spaced samples in Fourier domain optical coherence tomography,” Proc. SPIE8296, 829610 (2012).

[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).

[CrossRef]
[PubMed]

L. Greengard and J.-Y. Lee, “Accelerating the nonuniform fast Fourier transform,” SIAM Rev.46, 443–454 (2004).

[CrossRef]

M. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier, 2006).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer-Verlag, Berlin, 2008).

[CrossRef]

R. Zhu, J. Xu, C. Zhang, A. C. Chan, Q. Li, P. Chui, E. Y. Lam, and K. K. Wong, “Dual-band time-multiplexing swept-source OCT based on optical parametric amplification,” to be published in IEEE J. Sel. Top. Quantum Electron.

G. H. Golub and C. F. Van Loan, Matrix Computations (The Johns Hopkins University Press, 1996).

J. Ke, R. Zhu, and E. Y. Lam, “Image reconstruction from nonuniform samples in spectral domain optical coherence tomography,” in Signal Recovery and Synthesis, OSA Technical Digest (CD) (Optical Society of America, 2011), paper SMD2.