Abstract

No reliable non-invasive glucose monitoring devices are currently available. We implemented a mid-infrared (MIR) photoacoustic (PA) setup to track glucose in vitro in deep epidermal layers, which represents a significant step towards non-invasive in vivo glucose measurements using MIR light. An external-cavity quantum-cascade laser (1010–1095 cm−1) and a PA cell of only 78 mm3 volume were employed to monitor glucose in epidermal skin. Skin samples are characterized by a high water content. Such samples investigated with an open-ended PA cell lead to varying conditions in the PA chamber (i.e., change of light absorption or relative humidity) and cause unstable signals. To circumvent variations in relative humidity and possible water condensation, the PA chamber was constantly ventilated by a 10 sccm N2 flow. By bringing the epidermal skin samples in contact with aqueous glucose solutions with different concentrations (i.e., 0.1–10 g/dl), the glucose concentration in the skin sample was varied through passive diffusion. The achieved detection limit for glucose in epidermal skin is 100 mg/dl (SNR=1). Although this lies within the human physiological range (30–500 mg/dl) further improvements are necessary to non-invasively monitor glucose levels of diabetes patients. Furthermore spectra of epidermal tissue with and without glucose content have been recorded with the tunable quantum-cascade laser, indicating that epidermal constituents do not impair glucose detection.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. WHO, “Diabetes,” http://www.who.int/mediacentre/factsheets/fs312/en/ .
  2. E. Renard, “Monitoring glycemic control: the importance of self-monitoring of blood glucose,” Am. J. Med.118, 12S–19S (2005).
    [CrossRef]
  3. C. E. F. do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30, 541–549 (2008).
    [CrossRef]
  4. O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45, 165–177 (1999).
    [PubMed]
  5. O. S. Khalil, “Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the millennium,” Diabetes Technol. Ther.6, 660–697 (2004).
    [CrossRef]
  6. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5, 5–16 (2000).
    [CrossRef] [PubMed]
  7. C. Chou, C. Han, W. Kuo, Y. Huang, C. Feng, and J. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt.37, 3553–3557 (1998).
    [CrossRef]
  8. B. H. Malik, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15, 017002 (2010).
    [CrossRef] [PubMed]
  9. A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
    [CrossRef] [PubMed]
  10. J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10, 031110 (2005).
    [CrossRef] [PubMed]
  11. R. Marbach, T. Koschinsky, F. A. Gries, and H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc.47, 875–881 (1993).
    [CrossRef]
  12. K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc.57, 1236–1244 (2003).
    [CrossRef] [PubMed]
  13. C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
    [CrossRef] [PubMed]
  14. I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
    [CrossRef] [PubMed]
  15. G. Spanner and R. Niessner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes.” Fresenius J. Anal. Chem.355, 327–328 (1996).
  16. C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25, 2268–2275 (2002).
    [CrossRef] [PubMed]
  17. X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
    [CrossRef]
  18. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8, 296–311 (2006).
    [CrossRef] [PubMed]
  19. W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasice contact lens glucose sensor,” Diabetes Technol. Ther.8, 312–317 (2006).
    [CrossRef] [PubMed]
  20. J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell design for studying aqueous solutions and gels,” Rev. Sci. Instrum.82, 084903 (2011).
    [CrossRef] [PubMed]
  21. G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head.” Fresenius J. Anal. Chem.354, 306–310 (1996).
  22. Z. Zhao, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” Ph.D. thesis (University of Oulu, 2002).
  23. K. H. Hazen, M. A. Arnold, and G. W. Small, “Measurement of glucose in water first-overtone near-infrared spectra,” Appl. Spectrosc.52, 1597–1605 (1998).
    [CrossRef]
  24. J. T. Olesberg, M. A. Arnold, C. Mermelstein, and J. Schmitz, “Tunable laser diode system for noninvasive blood glucose measutements.” Appl. Spectrosc.59, 1480–1484 (2005).
    [CrossRef]
  25. J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem.45, 1621–1627 (1999).
    [PubMed]
  26. A. Duncan, J. Hannigan, S. S. Freeborn, and H. A. MacKenzie, “A portable non-invasive blood glucose monitor,” in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1995), pp. 455–458.
    [CrossRef]
  27. H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
    [PubMed]
  28. H. A. MacKenzie, H. Ashton, S. Spiers, and Y. Shen, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45, 1587–1595 (1999).
    [PubMed]
  29. K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determinaton by a pulsed photoa-coustic techinque: an experimental study using a gelatin-based tissue phantom.” Phys. Med. Biol.38, 1911–1922 (1993).
    [CrossRef] [PubMed]
  30. H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res.80, 1656–1661 (1975).
    [CrossRef]
  31. F. A. DuckPhysical Properties of Tissue (Academic, London, 1990).
  32. S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
    [CrossRef] [PubMed]
  33. M. Venugopal, K. E. Feuvrel, D. Mongin, and , “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring.” IEEE Sensors J.8, 71–80 (2008).
    [CrossRef]
  34. Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
    [CrossRef] [PubMed]
  35. W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
    [CrossRef] [PubMed]
  36. P. Garidel, “Mid-FTIR-microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4, 5671–5677 (2002).
    [CrossRef]
  37. K. C. Madison, “Barrier function of the skin: ”La raison d’être” of the epidermis,” J. Invest. Dermatol.121, 231–241 (2003).
    [CrossRef] [PubMed]
  38. R. Vonach, “Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood,” Appl. Spectrosc.52, 820–822 (1998).
    [CrossRef]
  39. M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for simultaneous determination of glucose and lactate in aqueous phase,” Analyst135, 3260–3265 (2010).
    [CrossRef] [PubMed]
  40. G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31, 284–290 (1993).
    [CrossRef] [PubMed]
  41. H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approch to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38, 209–215 (2005).
    [CrossRef]
  42. M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement,” Spectrochim. Acta A85, 61–65 (2012).
    [CrossRef]
  43. A. Rosencwaig and A. Gersho, “Theory of photoacoustic effect with solids,” J. Appl. Phys.47, 64–69 (1976).
    [CrossRef]
  44. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys.58, 381–431 (1986).
    [CrossRef]
  45. J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell with diamond window for mid-infrared investigations on biological samples,” Proc. SPIE8223, 8223–44 (2012).
  46. H. Günzler and H. U. Gremlich, IR-Spektroskopie (Wiley-VCH, 2003).
  47. R. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc.23, 641–645 (1992).
    [CrossRef]
  48. G. W. Lucassen, G. N. A. van Veen, and J. A. J. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance fourier transform infrared spectra in vivo,” J. Biomed. Opt.3, 267–280 (1998).
    [CrossRef]
  49. R. O. Potts, B. G. Guzek, R. R. Harris, and J. E. McKie, “A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance Infrared spectroscopy,” Arch. Dermatol. Res.277, 489–495 (1985).
    [CrossRef] [PubMed]
  50. M. Gloor, G. Hirsch, and U. Willebrand, “On the use of infrared spectroscopy for the in vivo measurement of the water content of the horny layer after application of dermatologic Ointments,” Arch. Dermatol. Res.271, 305–313 (1981).
    [CrossRef] [PubMed]

2012 (2)

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement,” Spectrochim. Acta A85, 61–65 (2012).
[CrossRef]

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell with diamond window for mid-infrared investigations on biological samples,” Proc. SPIE8223, 8223–44 (2012).

2011 (2)

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell design for studying aqueous solutions and gels,” Rev. Sci. Instrum.82, 084903 (2011).
[CrossRef] [PubMed]

2010 (3)

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
[CrossRef]

B. H. Malik, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15, 017002 (2010).
[CrossRef] [PubMed]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for simultaneous determination of glucose and lactate in aqueous phase,” Analyst135, 3260–3265 (2010).
[CrossRef] [PubMed]

2008 (3)

W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
[CrossRef] [PubMed]

M. Venugopal, K. E. Feuvrel, D. Mongin, and , “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring.” IEEE Sensors J.8, 71–80 (2008).
[CrossRef]

C. E. F. do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30, 541–549 (2008).
[CrossRef]

2006 (2)

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8, 296–311 (2006).
[CrossRef] [PubMed]

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasice contact lens glucose sensor,” Diabetes Technol. Ther.8, 312–317 (2006).
[CrossRef] [PubMed]

2005 (4)

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10, 031110 (2005).
[CrossRef] [PubMed]

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approch to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38, 209–215 (2005).
[CrossRef]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, and J. Schmitz, “Tunable laser diode system for noninvasive blood glucose measutements.” Appl. Spectrosc.59, 1480–1484 (2005).
[CrossRef]

2004 (1)

O. S. Khalil, “Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the millennium,” Diabetes Technol. Ther.6, 660–697 (2004).
[CrossRef]

2003 (4)

K. C. Madison, “Barrier function of the skin: ”La raison d’être” of the epidermis,” J. Invest. Dermatol.121, 231–241 (2003).
[CrossRef] [PubMed]

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc.57, 1236–1244 (2003).
[CrossRef] [PubMed]

2002 (2)

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25, 2268–2275 (2002).
[CrossRef] [PubMed]

P. Garidel, “Mid-FTIR-microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4, 5671–5677 (2002).
[CrossRef]

2000 (1)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5, 5–16 (2000).
[CrossRef] [PubMed]

1999 (4)

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45, 165–177 (1999).
[PubMed]

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem.45, 1621–1627 (1999).
[PubMed]

H. A. MacKenzie, H. Ashton, S. Spiers, and Y. Shen, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45, 1587–1595 (1999).
[PubMed]

1998 (4)

1996 (2)

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head.” Fresenius J. Anal. Chem.354, 306–310 (1996).

G. Spanner and R. Niessner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes.” Fresenius J. Anal. Chem.355, 327–328 (1996).

1995 (1)

A. Duncan, J. Hannigan, S. S. Freeborn, and H. A. MacKenzie, “A portable non-invasive blood glucose monitor,” in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1995), pp. 455–458.
[CrossRef]

1993 (3)

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determinaton by a pulsed photoa-coustic techinque: an experimental study using a gelatin-based tissue phantom.” Phys. Med. Biol.38, 1911–1922 (1993).
[CrossRef] [PubMed]

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31, 284–290 (1993).
[CrossRef] [PubMed]

R. Marbach, T. Koschinsky, F. A. Gries, and H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc.47, 875–881 (1993).
[CrossRef]

1992 (1)

R. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc.23, 641–645 (1992).
[CrossRef]

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys.58, 381–431 (1986).
[CrossRef]

1985 (1)

R. O. Potts, B. G. Guzek, R. R. Harris, and J. E. McKie, “A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance Infrared spectroscopy,” Arch. Dermatol. Res.277, 489–495 (1985).
[CrossRef] [PubMed]

1981 (1)

M. Gloor, G. Hirsch, and U. Willebrand, “On the use of infrared spectroscopy for the in vivo measurement of the water content of the horny layer after application of dermatologic Ointments,” Arch. Dermatol. Res.271, 305–313 (1981).
[CrossRef] [PubMed]

1976 (1)

A. Rosencwaig and A. Gersho, “Theory of photoacoustic effect with solids,” J. Appl. Phys.47, 64–69 (1976).
[CrossRef]

1975 (1)

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res.80, 1656–1661 (1975).
[CrossRef]

Aharon, Y.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

Anic, K.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for simultaneous determination of glucose and lactate in aqueous phase,” Analyst135, 3260–3265 (2010).
[CrossRef] [PubMed]

Arnold, M. A.

Ashton, H.

H. A. MacKenzie, H. Ashton, S. Spiers, and Y. Shen, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45, 1587–1595 (1999).
[PubMed]

H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
[PubMed]

Ballerstadt, R.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8, 296–311 (2006).
[CrossRef] [PubMed]

Barry, R. W.

R. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc.23, 641–645 (1992).
[CrossRef]

Borchert, M.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10, 031110 (2005).
[CrossRef] [PubMed]

Brandstetter, M.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for simultaneous determination of glucose and lactate in aqueous phase,” Analyst135, 3260–3265 (2010).
[CrossRef] [PubMed]

Buchert, J. M.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25, 2268–2275 (2002).
[CrossRef] [PubMed]

Burmeister, J. J.

J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem.45, 1621–1627 (1999).
[PubMed]

Chen, T.

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

Chou, C.

Christison, G. B.

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31, 284–290 (1993).
[CrossRef] [PubMed]

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determinaton by a pulsed photoa-coustic techinque: an experimental study using a gelatin-based tissue phantom.” Phys. Med. Biol.38, 1911–1922 (1993).
[CrossRef] [PubMed]

Coté, G. L.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5, 5–16 (2000).
[CrossRef] [PubMed]

do Amaral, C. E. F.

C. E. F. do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30, 541–549 (2008).
[CrossRef]

Downing, H. D.

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res.80, 1656–1661 (1975).
[CrossRef]

Duck, F. A.

F. A. DuckPhysical Properties of Tissue (Academic, London, 1990).

Duncan, A.

A. Duncan, J. Hannigan, S. S. Freeborn, and H. A. MacKenzie, “A portable non-invasive blood glucose monitor,” in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1995), pp. 455–458.
[CrossRef]

Edwards, H. G. M.

R. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc.23, 641–645 (1992).
[CrossRef]

Enejder, A. M. K.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Evans, C.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8, 296–311 (2006).
[CrossRef] [PubMed]

Fang, J.

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

Faupel, M.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Feld, M. S.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Feng, C.

Feuvrel, K. E.

M. Venugopal, K. E. Feuvrel, D. Mongin, and , “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring.” IEEE Sensors J.8, 71–80 (2008).
[CrossRef]

Fomichova, A.

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

Fowler, R.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Freeborn, S. S.

A. Duncan, J. Hannigan, S. S. Freeborn, and H. A. MacKenzie, “A portable non-invasive blood glucose monitor,” in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1995), pp. 455–458.
[CrossRef]

Gabriely, I.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

Garidel, P.

P. Garidel, “Mid-FTIR-microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4, 5671–5677 (2002).
[CrossRef]

Gebhart, S.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Genner, A.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for simultaneous determination of glucose and lactate in aqueous phase,” Analyst135, 3260–3265 (2010).
[CrossRef] [PubMed]

Gersho, A.

A. Rosencwaig and A. Gersho, “Theory of photoacoustic effect with solids,” J. Appl. Phys.47, 64–69 (1976).
[CrossRef]

Gloor, M.

M. Gloor, G. Hirsch, and U. Willebrand, “On the use of infrared spectroscopy for the in vivo measurement of the water content of the horny layer after application of dermatologic Ointments,” Arch. Dermatol. Res.271, 305–313 (1981).
[CrossRef] [PubMed]

Gowda, A.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8, 296–311 (2006).
[CrossRef] [PubMed]

Gremlich, H. U.

H. Günzler and H. U. Gremlich, IR-Spektroskopie (Wiley-VCH, 2003).

Gretz, N.

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

Gries, F. A.

Groenendaal, W.

W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
[CrossRef] [PubMed]

Günzler, H.

H. Günzler and H. U. Gremlich, IR-Spektroskopie (Wiley-VCH, 2003).

Guo, X.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
[CrossRef]

Guzek, B. G.

R. O. Potts, B. G. Guzek, R. R. Harris, and J. E. McKie, “A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance Infrared spectroscopy,” Arch. Dermatol. Res.277, 489–495 (1985).
[CrossRef] [PubMed]

Han, C.

Hannigan, J.

A. Duncan, J. Hannigan, S. S. Freeborn, and H. A. MacKenzie, “A portable non-invasive blood glucose monitor,” in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1995), pp. 455–458.
[CrossRef]

Harris, R. R.

R. O. Potts, B. G. Guzek, R. R. Harris, and J. E. McKie, “A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance Infrared spectroscopy,” Arch. Dermatol. Res.277, 489–495 (1985).
[CrossRef] [PubMed]

Hazen, K. H.

Heise, H. M.

Herrmann, C.

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

Hilbers, P. A. J.

W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
[CrossRef] [PubMed]

Hirsch, G.

M. Gloor, G. Hirsch, and U. Willebrand, “On the use of infrared spectroscopy for the in vivo measurement of the water content of the horny layer after application of dermatologic Ointments,” Arch. Dermatol. Res.271, 305–313 (1981).
[CrossRef] [PubMed]

Hodgson, P.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determinaton by a pulsed photoa-coustic techinque: an experimental study using a gelatin-based tissue phantom.” Phys. Med. Biol.38, 1911–1922 (1993).
[CrossRef] [PubMed]

Horowitz, G. L.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

C. Chou, C. Han, W. Kuo, Y. Huang, C. Feng, and J. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt.37, 3553–3557 (1998).
[CrossRef]

Hunter, M.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Jansen, J. A. J.

G. W. Lucassen, G. N. A. van Veen, and J. A. J. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance fourier transform infrared spectra in vivo,” J. Biomed. Opt.3, 267–280 (1998).
[CrossRef]

Kaplan, J.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

Kapsner, C.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Khalil, O. S.

O. S. Khalil, “Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the millennium,” Diabetes Technol. Ther.6, 660–697 (2004).
[CrossRef]

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45, 165–177 (1999).
[PubMed]

Koschinsky, T.

Kottmann, J.

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell with diamond window for mid-infrared investigations on biological samples,” Proc. SPIE8223, 8223–44 (2012).

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell design for studying aqueous solutions and gels,” Rev. Sci. Instrum.82, 084903 (2011).
[CrossRef] [PubMed]

Kuo, W.

Lambert, J. L.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10, 031110 (2005).
[CrossRef] [PubMed]

Landau, J. I.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25, 2268–2275 (2002).
[CrossRef] [PubMed]

Lazzaro, D.

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasice contact lens glucose sensor,” Diabetes Technol. Ther.8, 312–317 (2006).
[CrossRef] [PubMed]

Lendl, B.

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for simultaneous determination of glucose and lactate in aqueous phase,” Analyst135, 3260–3265 (2010).
[CrossRef] [PubMed]

Lincoln, D.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Lindberg, J.

H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
[PubMed]

Lucassen, G. W.

G. W. Lucassen, G. N. A. van Veen, and J. A. J. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance fourier transform infrared spectra in vivo,” J. Biomed. Opt.3, 267–280 (1998).
[CrossRef]

MacKenzie, H. A.

H. A. MacKenzie, H. Ashton, S. Spiers, and Y. Shen, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45, 1587–1595 (1999).
[PubMed]

A. Duncan, J. Hannigan, S. S. Freeborn, and H. A. MacKenzie, “A portable non-invasive blood glucose monitor,” in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1995), pp. 455–458.
[CrossRef]

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31, 284–290 (1993).
[CrossRef] [PubMed]

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determinaton by a pulsed photoa-coustic techinque: an experimental study using a gelatin-based tissue phantom.” Phys. Med. Biol.38, 1911–1922 (1993).
[CrossRef] [PubMed]

H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
[PubMed]

Madison, K. C.

K. C. Madison, “Barrier function of the skin: ”La raison d’être” of the epidermis,” J. Invest. Dermatol.121, 231–241 (2003).
[CrossRef] [PubMed]

Malchoff, C. D.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25, 2268–2275 (2002).
[CrossRef] [PubMed]

Malik, B. H.

B. H. Malik, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15, 017002 (2010).
[CrossRef] [PubMed]

Mandelis, A.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
[CrossRef]

Mäntele, W.

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement,” Spectrochim. Acta A85, 61–65 (2012).
[CrossRef]

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approch to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38, 209–215 (2005).
[CrossRef]

Marbach, R.

March, W.

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasice contact lens glucose sensor,” Diabetes Technol. Ther.8, 312–317 (2006).
[CrossRef] [PubMed]

Maruo, K.

Matvienko, A.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
[CrossRef]

McGee, V.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

McKie, J. E.

R. O. Potts, B. G. Guzek, R. R. Harris, and J. E. McKie, “A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance Infrared spectroscopy,” Arch. Dermatol. Res.277, 489–495 (1985).
[CrossRef] [PubMed]

McNichols, R.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8, 296–311 (2006).
[CrossRef] [PubMed]

McNichols, R. J.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5, 5–16 (2000).
[CrossRef] [PubMed]

Mermelstein, C.

Mevorach, M.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

Mongin, D.

M. Venugopal, K. E. Feuvrel, D. Mongin, and , “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring.” IEEE Sensors J.8, 71–80 (2008).
[CrossRef]

Neudecker, S.

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

Niessner, R.

G. Spanner and R. Niessner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes.” Fresenius J. Anal. Chem.355, 327–328 (1996).

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head.” Fresenius J. Anal. Chem.354, 306–310 (1996).

Oh, J.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Olesberg, J. T.

Ozaki, Y.

Pasqua, J.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Pelletier, C. C.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10, 031110 (2005).
[CrossRef] [PubMed]

Petrich, W.

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

Pleitez, M.

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement,” Spectrochim. Acta A85, 61–65 (2012).
[CrossRef]

Potts, R. O.

R. O. Potts, B. G. Guzek, R. R. Harris, and J. E. McKie, “A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance Infrared spectroscopy,” Arch. Dermatol. Res.277, 489–495 (1985).
[CrossRef] [PubMed]

Pucci, A.

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

Quan, K. M.

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determinaton by a pulsed photoa-coustic techinque: an experimental study using a gelatin-based tissue phantom.” Phys. Med. Biol.38, 1911–1922 (1993).
[CrossRef] [PubMed]

Rae, P.

H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
[PubMed]

Rastogi, S.

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasice contact lens glucose sensor,” Diabetes Technol. Ther.8, 312–317 (2006).
[CrossRef] [PubMed]

Renard, E.

E. Renard, “Monitoring glycemic control: the importance of self-monitoring of blood glucose,” Am. J. Med.118, 12S–19S (2005).
[CrossRef]

Rey, J. M.

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell with diamond window for mid-infrared investigations on biological samples,” Proc. SPIE8223, 8223–44 (2012).

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell design for studying aqueous solutions and gels,” Rev. Sci. Instrum.82, 084903 (2011).
[CrossRef] [PubMed]

Rosencwaig, A.

A. Rosencwaig and A. Gersho, “Theory of photoacoustic effect with solids,” J. Appl. Phys.47, 64–69 (1976).
[CrossRef]

Sasic, S.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Scecina, T. G.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Schmidt, K. A.

W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
[CrossRef] [PubMed]

Schmitz, J.

Shamoon, H.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

Shen, Y.

H. A. MacKenzie, H. Ashton, S. Spiers, and Y. Shen, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45, 1587–1595 (1999).
[PubMed]

Shen, Y. C.

H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
[PubMed]

Shih, W.

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

Shoukri, K.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25, 2268–2275 (2002).
[CrossRef] [PubMed]

Shyu, J.

Sigrist, M. W.

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell with diamond window for mid-infrared investigations on biological samples,” Proc. SPIE8223, 8223–44 (2012).

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell design for studying aqueous solutions and gels,” Rev. Sci. Instrum.82, 084903 (2011).
[CrossRef] [PubMed]

Sivagurunathan, K.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
[CrossRef]

Small, G. W.

Spanner, G.

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head.” Fresenius J. Anal. Chem.354, 306–310 (1996).

G. Spanner and R. Niessner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes.” Fresenius J. Anal. Chem.355, 327–328 (1996).

Spiers, S.

H. A. MacKenzie, H. Ashton, S. Spiers, and Y. Shen, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45, 1587–1595 (1999).
[PubMed]

H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
[PubMed]

Steed, L.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys.58, 381–431 (1986).
[CrossRef]

Tamura, M.

Tsai, M.

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

Tsai, Y.

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

Tsurugi, M.

van Riel, N. A. W.

W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
[CrossRef] [PubMed]

van Veen, G. N. A.

G. W. Lucassen, G. N. A. van Veen, and J. A. J. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance fourier transform infrared spectra in vivo,” J. Biomed. Opt.3, 267–280 (1998).
[CrossRef]

Vanstory, M.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Venugopal, M.

M. Venugopal, K. E. Feuvrel, D. Mongin, and , “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring.” IEEE Sensors J.8, 71–80 (2008).
[CrossRef]

von Basum, G.

W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
[CrossRef] [PubMed]

von Lilienfeld-Toal, H.

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement,” Spectrochim. Acta A85, 61–65 (2012).
[CrossRef]

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approch to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38, 209–215 (2005).
[CrossRef]

Vonach, R.

Vrancic, C.

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

Wangsness, M.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Weidenmüller, M.

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approch to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38, 209–215 (2005).
[CrossRef]

Willebrand, U.

M. Gloor, G. Hirsch, and U. Willebrand, “On the use of infrared spectroscopy for the in vivo measurement of the water content of the horny layer after application of dermatologic Ointments,” Arch. Dermatol. Res.271, 305–313 (1981).
[CrossRef] [PubMed]

Williams, A. C.

R. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc.23, 641–645 (1992).
[CrossRef]

Williams, D.

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res.80, 1656–1661 (1975).
[CrossRef]

Wolf, B.

C. E. F. do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30, 541–549 (2008).
[CrossRef]

Wozniak, R.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

Wu, P.

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

Xhelaj, A.

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approch to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38, 209–215 (2005).
[CrossRef]

Xu, F.

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Zhao, Z.

Z. Zhao, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” Ph.D. thesis (University of Oulu, 2002).

Zinman, B.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
[CrossRef]

Am. J. Med. (1)

E. Renard, “Monitoring glycemic control: the importance of self-monitoring of blood glucose,” Am. J. Med.118, 12S–19S (2005).
[CrossRef]

Analyst (2)

C. Vrancic, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst136, 1192–1198 (2011).
[CrossRef] [PubMed]

M. Brandstetter, A. Genner, K. Anic, and B. Lendl, “Tunable external cavity quantum cascade laser for simultaneous determination of glucose and lactate in aqueous phase,” Analyst135, 3260–3265 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (5)

Arch. Dermatol. Res. (2)

R. O. Potts, B. G. Guzek, R. R. Harris, and J. E. McKie, “A noninvasive, in vivo technique to quantitatively measure water concentration of the stratum corneum using attenuated total-reflectance Infrared spectroscopy,” Arch. Dermatol. Res.277, 489–495 (1985).
[CrossRef] [PubMed]

M. Gloor, G. Hirsch, and U. Willebrand, “On the use of infrared spectroscopy for the in vivo measurement of the water content of the horny layer after application of dermatologic Ointments,” Arch. Dermatol. Res.271, 305–313 (1981).
[CrossRef] [PubMed]

Biol. Pharm. Bull. (1)

Y. Huang, J. Fang, P. Wu, T. Chen, M. Tsai, and Y. Tsai, “Noninvasive glucose monitoring by back diffusion via skin: chemical and physical enhancements,” Biol. Pharm. Bull.26, 983–987 (2003).
[CrossRef] [PubMed]

Clin. Chem. (3)

H. A. MacKenzie, H. Ashton, S. Spiers, and Y. Shen, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45, 1587–1595 (1999).
[PubMed]

O. S. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45, 165–177 (1999).
[PubMed]

J. J. Burmeister and M. A. Arnold, “Evaluation of measurement sites for noninvasive blood glucose sensing with near-infrared transmission spectroscopy,” Clin. Chem.45, 1621–1627 (1999).
[PubMed]

Diabetes Care (2)

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25, 2268–2275 (2002).
[CrossRef] [PubMed]

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22, 2026–2032 (1999).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (5)

O. S. Khalil, “Non-invasive glucose measurement technologies: An update from 1999 to the dawn of the millennium,” Diabetes Technol. Ther.6, 660–697 (2004).
[CrossRef]

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near-infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8, 296–311 (2006).
[CrossRef] [PubMed]

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasice contact lens glucose sensor,” Diabetes Technol. Ther.8, 312–317 (2006).
[CrossRef] [PubMed]

W. Groenendaal, K. A. Schmidt, G. von Basum, N. A. W. van Riel, and P. A. J. Hilbers, “Modeling glucose and water dynamics in human skin,” Diabetes Technol. Ther.10, 283–293 (2008).
[CrossRef] [PubMed]

S. Gebhart, M. Faupel, R. Fowler, C. Kapsner, D. Lincoln, V. McGee, J. Pasqua, L. Steed, M. Wangsness, F. Xu, and M. Vanstory, “Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum,” Diabetes Technol. Ther.5, 159–166 (2003).
[CrossRef] [PubMed]

Fresenius J. Anal. Chem. (2)

G. Spanner and R. Niessner, “Noninvasive determination of blood constituents using an array of modulated laser diodes and a photoacoustic sensor head.” Fresenius J. Anal. Chem.354, 306–310 (1996).

G. Spanner and R. Niessner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes.” Fresenius J. Anal. Chem.355, 327–328 (1996).

IEEE Sensors J. (1)

M. Venugopal, K. E. Feuvrel, D. Mongin, and , “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring.” IEEE Sensors J.8, 71–80 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. Rosencwaig and A. Gersho, “Theory of photoacoustic effect with solids,” J. Appl. Phys.47, 64–69 (1976).
[CrossRef]

J. Biomed. Opt. (5)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5, 5–16 (2000).
[CrossRef] [PubMed]

B. H. Malik, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15, 017002 (2010).
[CrossRef] [PubMed]

A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. Shih, S. Sasic, G. L. Horowitz, and M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt.10, 031114 (2005).
[CrossRef] [PubMed]

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10, 031110 (2005).
[CrossRef] [PubMed]

G. W. Lucassen, G. N. A. van Veen, and J. A. J. Jansen, “Band analysis of hydrated human skin stratum corneum attenuated total reflectance fourier transform infrared spectra in vivo,” J. Biomed. Opt.3, 267–280 (1998).
[CrossRef]

J. Geophys. Res. (1)

H. D. Downing and D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res.80, 1656–1661 (1975).
[CrossRef]

J. Invest. Dermatol. (1)

K. C. Madison, “Barrier function of the skin: ”La raison d’être” of the epidermis,” J. Invest. Dermatol.121, 231–241 (2003).
[CrossRef] [PubMed]

J. Phys. Conf. Ser. (1)

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys. Conf. Ser.214, 012025 (2010).
[CrossRef]

J. Raman Spectrosc. (1)

R. W. Barry, H. G. M. Edwards, and A. C. Williams, “Fourier transform Raman and infrared vibrational study of human skin: Assignment of spectral bands,” J. Raman Spectrosc.23, 641–645 (1992).
[CrossRef]

Med. Biol. Eng. Comput. (1)

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31, 284–290 (1993).
[CrossRef] [PubMed]

Med. Eng. Phys. (1)

C. E. F. do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30, 541–549 (2008).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

P. Garidel, “Mid-FTIR-microspectroscopy of stratum corneum single cells and stratum corneum tissue,” Phys. Chem. Chem. Phys.4, 5671–5677 (2002).
[CrossRef]

Phys. Med. Biol. (1)

K. M. Quan, G. B. Christison, H. A. MacKenzie, and P. Hodgson, “Glucose determinaton by a pulsed photoa-coustic techinque: an experimental study using a gelatin-based tissue phantom.” Phys. Med. Biol.38, 1911–1922 (1993).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell with diamond window for mid-infrared investigations on biological samples,” Proc. SPIE8223, 8223–44 (2012).

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys.58, 381–431 (1986).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Kottmann, J. M. Rey, and M. W. Sigrist, “New photoacoustic cell design for studying aqueous solutions and gels,” Rev. Sci. Instrum.82, 084903 (2011).
[CrossRef] [PubMed]

Spectrochim. Acta A (1)

M. Pleitez, H. von Lilienfeld-Toal, and W. Mäntele, “Infrared spectroscopic analysis of human interstitial fluid in vitro and in vivo using FT-IR spectroscopy and pulsed quantum cascade lasers (QCL): Establishing a new approach to non invasive glucose measurement,” Spectrochim. Acta A85, 61–65 (2012).
[CrossRef]

The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1)

A. Duncan, J. Hannigan, S. S. Freeborn, and H. A. MacKenzie, “A portable non-invasive blood glucose monitor,” in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers ’95 (1995), pp. 455–458.
[CrossRef]

Vib. Spectrosc. (1)

H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, and W. Mäntele, “A novel approch to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc.38, 209–215 (2005).
[CrossRef]

Other (5)

WHO, “Diabetes,” http://www.who.int/mediacentre/factsheets/fs312/en/ .

H. Günzler and H. U. Gremlich, IR-Spektroskopie (Wiley-VCH, 2003).

F. A. DuckPhysical Properties of Tissue (Academic, London, 1990).

H. Ashton, H. A. MacKenzie, P. Rae, Y. C. Shen, S. Spiers, and J. Lindberg, “Blood glucose measurements by photoacoustics,” in Proceedings of the 10th International Conference on Photoacoustic and Photothermal Phenomena, Vol. 463 of AIP Conference Proceedings (AIP, 1999), pp. 570–572.
[PubMed]

Z. Zhao, “Pulsed photoacoustic techniques and glucose determination in human blood and tissue,” Ph.D. thesis (University of Oulu, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Overview of possible techniques and active research areas for in-vivo glucose measurements.

Fig. 2
Fig. 2

Definition of lengths used to distinguish between the different cases in the Rosencwaig Gersho model. lg denotes the length of the gas-filled PA chamber, l the sample length, μa=1/α the optical absorption length and μs the thermal diffusion length. In this figure a length ratio of l > μa > μs is pictured, as occurring in the samples investigated in this work. The periodical PA signal is detected with a microphone (Mic).

Fig. 3
Fig. 3

Setup for photoacoustic measurements: QCL = quantum cascade laser, FM = flipping mirror, L = lens, I = Iris, DL = diode laser (for alignment tasks), CHOP = chopper, PM = power meter, MIC= microphone and RH-T = relative humidity-temperature sensor.

Fig. 4
Fig. 4

Schematic of the PA cell and the attachable reservoir for liquids. The PA cell is closed directly by the sample itself (i.e., human skin sample). N2 ventilation is needed, if the PA chamber is closed with a sample containing volatile components.

Fig. 5
Fig. 5

Relative humidity (RH) evolution in the PA chamber after placing it on an epidermal skin sample. In the open-ended PA cell (solid line) the RH constantly increases, until it finally leads to condensation. With N2 ventilation the RH decreases below 20 % and stabilizes.

Fig. 6
Fig. 6

Time dependence of the PA signal for consecutive sample solutions with different glucose concentration. During sample exchange, the laser beam was blocked, which leads to the sharp signal decrease. The arrows mark positions where the glucose concentration of the consecutive sample solution was increased by 1 g/dl compared to the previous one. The inset implies that a time of approximately 90 s is necessary to establish a stable glucose concentration profile within the epidermal skin sample.

Fig. 7
Fig. 7

a) PA signal dependence on glucose concentration in a human epidermal skin sample (0 – 10 g/dl). A simultaneous measurement of RH (•) and temperature (+) allows to compensate PA signal changes due to a variation of these parameters. Compensation for these drifts leads to an improved correlation between the PA signal and the glucose concentration (R2=0.998). b) PA signal dependence on glucose concentration in a human epidermal skin sample for lower concentrations (0 – 2000 mg/dl).

Fig. 8
Fig. 8

a) PA spectrum of a human epidermal skin sample in contact with water x, 2 g/dl (boe-3-4-667-i001.jpg) and 10 g/dl glucose solution (boe-3-4-667-i002.jpg). b) PA spectrum of different glucose concentrations (2 and 10 g/dl) in human epidermal skin samples with subtracted water and skin background. A comparison of a FTIR attenuated total reflection spectrum of glucose shows a good correlation with the PA measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A PA γ P 0 D s D g r 2 π T 0 k s I 0 α V 0 f 3 2 ,
A PA I 0 α V 0 f 3 2 ,

Metrics