Abstract

We describe a simple and low-cost technique for resolving the complex conjugate ambiguity in Fourier domain optical coherence tomography (OCT) that is applicable to many swept source OCT (SSOCT) systems. First, we review the principles of coherence revival, wherein an interferometer illuminated by an external cavity tunable laser (ECTL) exhibits interference fringes when the two arms of the interferometer are mismatched by an integer multiple of the laser cavity length. Second, we report observations that the spectral interferogram obtained from SSOCT systems employing certain ECTLs are automatically phase modulated when the arm lengths are mismatched this way. This phase modulation results in a frequency-shifted interferogram, effectively creating an extended-depth heterodyne SSOCT system without the use of acousto-optic or electro-optic modulators. We suggest that this phase modulation may be caused by the ECTL cavity optical pathlength varying slightly over the laser sweep, and support this hypothesis with numerical simulations. We also report on the successful implementation of this technique with two commercial swept source lasers operating at 840nm and 1040nm, with sweep rates of 8kHz and 100kHz respectively. The extended imaging depth afforded by this technique was demonstrated by measuring the sensitivity fall-off profiles of each laser with matched and mismatched interferometer arms. The feasibility of this technique for clinical systems is demonstrated by imaging the ocular anterior segments of healthy human volunteers.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
    [CrossRef] [PubMed]
  3. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
    [PubMed]
  4. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  5. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  6. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
    [CrossRef] [PubMed]
  7. E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express13(2), 583–594 (2005).
    [CrossRef] [PubMed]
  8. S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004).
    [CrossRef] [PubMed]
  9. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005–064006 (2005).
    [CrossRef] [PubMed]
  10. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett.30(2), 147–149 (2005).
    [CrossRef] [PubMed]
  11. A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
    [CrossRef] [PubMed]
  12. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett.31(16), 2426–2428 (2006).
    [CrossRef] [PubMed]
  13. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
    [CrossRef] [PubMed]
  14. A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett.31(9), 1271–1273 (2006).
    [CrossRef] [PubMed]
  15. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt.45(8), 1861–1865 (2006).
    [CrossRef] [PubMed]
  16. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett.32(23), 3423–3425 (2007).
    [CrossRef] [PubMed]
  17. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007).
    [CrossRef] [PubMed]
  18. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett.90(5), 054103 (2007).
    [CrossRef]
  19. Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007).
    [CrossRef] [PubMed]
  20. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008).
    [CrossRef] [PubMed]
  21. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).
    [CrossRef] [PubMed]
  22. S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys.46(12), 7720–7723 (2007).
    [CrossRef]
  23. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA., 1986).
  24. H. X. Jiang and J. Y. Lin, ““Mode spacing ``anomaly” in InGaN blue lasers,” Appl. Phys. Lett.74(8), 1066–1068 (1999).
    [CrossRef]
  25. A.-H. Dhalla and J. A. Izatt, “Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line,” Biomed. Opt. Express2(5), 1218–1232 (2011).
    [CrossRef] [PubMed]
  26. A.-H. Dhalla and J. A. Izatt, “Complete complex conjugate resolved heterodyne swept source optical coherence tomography using a dispersive optical delay line: erratum,” Biomed. Opt. Express3(3), 630–632 (2012).
    [CrossRef]
  27. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, New York, 2007).
  28. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  29. M. R. Hee, “Optical coherence tomography: theory,” in Handbook of Optical Coherence Tomography, B. Bouma and G. Tearney, eds. (Marcel Dekker, New York 2002).
  30. S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B13(6), 1120–1129 (1996).
    [CrossRef]
  31. A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
    [CrossRef]

2012 (2)

A.-H. Dhalla and J. A. Izatt, “Complete complex conjugate resolved heterodyne swept source optical coherence tomography using a dispersive optical delay line: erratum,” Biomed. Opt. Express3(3), 630–632 (2012).
[CrossRef]

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

2011 (2)

2009 (1)

2008 (1)

2007 (5)

2006 (5)

2005 (3)

2004 (2)

2003 (1)

2002 (1)

1999 (2)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

H. X. Jiang and J. Y. Lin, ““Mode spacing ``anomaly” in InGaN blue lasers,” Appl. Phys. Lett.74(8), 1066–1068 (1999).
[CrossRef]

1996 (1)

1995 (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

An, L.

Aoki, G.

Applegate, B. E.

Bachmann, A.

Baek, S.-Y.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys.46(12), 7720–7723 (2007).
[CrossRef]

Biedermann, B. R.

Boppart, S. A.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Bouma, B.

Bouma, B. E.

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Brezinski, M. E.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Bustamante, T.

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Z.

Choma, M.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005–064006 (2005).
[CrossRef] [PubMed]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005–064006 (2005).
[CrossRef] [PubMed]

de Boer, J.

Dhalla, A.-H.

Diddams, S.

Diels, J.-C.

Drexler, W.

Duker, J. S.

Eigenwillig, C. M.

Endo, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hendargo, H.

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

Hermann, B.

Hitzenberger, C.

Hofer, B.

Huang, D.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Itoh, M.

Izatt, J.

Izatt, J. A.

A.-H. Dhalla and J. A. Izatt, “Complete complex conjugate resolved heterodyne swept source optical coherence tomography using a dispersive optical delay line: erratum,” Biomed. Opt. Express3(3), 630–632 (2012).
[CrossRef]

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

A.-H. Dhalla and J. A. Izatt, “Complete complex conjugate resolved heterodyne swept-source optical coherence tomography using a dispersive optical delay line,” Biomed. Opt. Express2(5), 1218–1232 (2011).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett.31(16), 2426–2428 (2006).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005–064006 (2005).
[CrossRef] [PubMed]

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

Jiang, H. X.

H. X. Jiang and J. Y. Lin, ““Mode spacing ``anomaly” in InGaN blue lasers,” Appl. Phys. Lett.74(8), 1066–1068 (1999).
[CrossRef]

Kane, D. J.

Kim, Y.-H.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys.46(12), 7720–7723 (2007).
[CrossRef]

Klein, T.

Ko, T. H.

Kowalczyk, A.

Kuo, A.

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

Kwon, O.

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys.46(12), 7720–7723 (2007).
[CrossRef]

Lasser, T.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, J. Y.

H. X. Jiang and J. Y. Lin, ““Mode spacing ``anomaly” in InGaN blue lasers,” Appl. Phys. Lett.74(8), 1066–1068 (1999).
[CrossRef]

Makita, S.

Matz, G.

McNabb, R.

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

Michaely, R.

Nanikivil, D.

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

Nelson, J. S.

Pan, Y.

Peterson, K. A.

Pircher, M.

Pitris, C.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Povazay, B.

Puliafito, C. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rollins, A. M.

Sarunic, M.

Sarunic, M. V.

Schuman, J. S.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sekhar, S. C.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tao, Y. K.

Tearney, G.

Tearney, G. J.

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Unterhuber, A.

Vakhtin, A. B.

Vakoc, B. J.

Wang, H.

Wang, R. K.

Wieser, W.

Wojtkowski, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yun, S.

Yun, S. H.

Zhang, J.

Zhao, M.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett.90(5), 054103 (2007).
[CrossRef]

H. X. Jiang and J. Y. Lin, ““Mode spacing ``anomaly” in InGaN blue lasers,” Appl. Phys. Lett.74(8), 1066–1068 (1999).
[CrossRef]

Arch. Ophthalmol. (1)

M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Heart (1)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

J. Biomed. Opt. (1)

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005–064006 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

S.-Y. Baek, O. Kwon, and Y.-H. Kim, “High-resolution mode-spacing measurement of the blue-violet diode laser using interference of fields created with time delays greater than the coherence time,” Jpn. J. Appl. Phys.46(12), 7720–7723 (2007).
[CrossRef]

Opt. Express (7)

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. Leitgeb, and C. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express13(2), 583–594 (2005).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, and B. Bouma, “Removing the depth-degeneracy in optical frequency domain imaging with frequency shifting,” Opt. Express12(20), 4822–4828 (2004).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express14(4), 1487–1496 (2006).
[CrossRef] [PubMed]

Opt. Lett. (9)

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett.31(16), 2426–2428 (2006).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett.31(3), 362–364 (2006).
[CrossRef] [PubMed]

A. B. Vakhtin, K. A. Peterson, and D. J. Kane, “Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram,” Opt. Lett.31(9), 1271–1273 (2006).
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, “High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation,” Opt. Lett.32(20), 2918–2920 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett.32(23), 3423–3425 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett.27(16), 1415–1417 (2002).
[CrossRef] [PubMed]

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett.30(2), 147–149 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

A.-H. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G, 82131G-4 (2012).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA., 1986).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley-Interscience, New York, 2007).

M. R. Hee, “Optical coherence tomography: theory,” in Handbook of Optical Coherence Tomography, B. Bouma and G. Tearney, eds. (Marcel Dekker, New York 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Time and Fourier domain representations of coherence revival. The ideal interferogram is convolved with the instantaneous source spectrum to yield the measured spectral interferogram, which is the Fourier transform of the observed A-scan. Equivalently, the ideal sample reflectivity is multiplied by the fall-off function, resulting in the observed A-scan.

Fig. 2
Fig. 2

Schematic of SSOCT systems tested. Laser was either an 840nm or 1040nm ECTL. BR: Balanced receiver. PM: power meter. BD: beam dump. UP: Unused port. G: galvanometer.

Fig. 3
Fig. 3

(A-C) Fall-off plots from a numerical simulation of a coherence revival SSOCT system with a stationary cavity for 0, +1 and +2 cavity length offsets, respectively. Note that no shift in the peak sensitivity position is observed. (D) Fall-off profile demonstrating coherence revival peaks centered at 80mm and 160mm.

Fig. 4
Fig. 4

Fall-off plots from a numerical simulation of a coherence revival SSOCT system with a cavity whose pathlength varies linearly in wavelength with a slope of 2µm/nm, +1 (A) and +2 (B) cavity length offsets. The expected axial position shifts of the peak sensitivity positions of 2.1 and 4.2mm are observed.

Fig. 5
Fig. 5

A and B: Fall-off plots from a numerical simulation of a coherence revival SSOCT system with a cavity whose pathlength varies linearly in frequency with an average slope of 2µm/nm, for +1 and +2 cavity length offsets, respectively. The expected axial position shifts of the peak sensitivity positions are observed, but the axial PSFs are severely degraded due to the nonlinear phase modulation. C and D show the same data as A and B after applying the dispersion compensation algorithm from Eq. (14).

Fig. 6
Fig. 6

Fall-off measurements from the 840nm system for 0 (A), +1 (B) and +2 (C) cavity length offsets. The physical separations between the peak sensitivity position from 0 to +1 and from +1 to +2 were both 66.1mm.

Fig. 7
Fig. 7

Fall-off measurements from the 1040nm system for −1 (A), 0 (B) and +1 (C) cavity length offsets. The physical separations between the peak sensitivity positions of the −1 and 0 and the 0 and +1 offsets were 115.0mm and 114.8mm, respectively

Fig. 8
Fig. 8

Comparison images taken on the 840nm, 8kHz (Thorlabs SL850-P16 laser) system with 0 (A) and +1 (B) cavity length offsets. Both images comprise 1000 (lateral) x 1300 (axial) pixels spanning 13 mm (lateral) x 5.3 mm (axial), the latter scaled to account for refractive index. Each image represents 5 averaged frames obtained over 0.6s. The locations of the ZPD and +1 offset positions are indicated.

Fig. 9
Fig. 9

Comparison images taken on the 1040nm, 100kHz (Axsun Technologies laser) system with 0 (A) and +1 (B) cavity length offsets. Both images comprise 2000 (lateral) x 2300 (axial) pixels spanning 14 mm (lateral) x 6.9 mm (axial), the latter scaled to account for refractive index. Each image represents 5 averaged frames obtained over 100msec. The locations of the ZPD and +1 offset positions are indicated.

Fig. 10
Fig. 10

Volume projections of the same eye acquired with the 840nm (left) and 1040nm (right) systems. The 840nm volume consisted of 1300 (axial) x 500 x 200 samples, acquired in 12.5 seconds. The 1040nm volume consisted of 2304 (axial) x 500 x 200 samples, acquired in 1 second.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) n cos( 2k( t )[ z r z n ( t ) ] )
  z n ( λ c )= z n0 +M( λ 0 λ c )
i n ( k c )cos( 2 k c ( z r z n0 M λ 0 )+4πM )
Δz=M λ 0
T cavity (ω)= T max 1+ ( 2F π ) 2 sin 2 ( πω ω FSR )
T cavity (ω)( T max 1+ (τω) 2 )( m= δ( ωm ω FSR ) )
S inst (ω, ω c )= S source (ω)  T filter (ω, ω c ) [ ( T max 1+ (τω) 2 )( m= δ( ωm ω FSR ) ) ]
f falloff (z)= f filter (z)  [ exp( |z| ζ )( m= δ( zm n eff L) ) ]
Δ z 6dB 0.44  n eff LF
S source (ω)= S 0 exp[ ( ω ω 0 ) 2 2 σ S 2 ]
ω FSR ( ω c )= πc n eff L( ω c )     or     ω FSR ( ω c )= πc n eff ( ω c )L  
T filter (ω ω c )=exp[ ( ω ω c ) 2 2 σ filter 2 ]
I( ω c )real{ S inst (ω, ω c )exp[ j(ω ω c )Δ τ g ] dω 2π }
DC(k)=exp( j( a 1 (k k 0 ) 2 + a 2 (k k 0 ) 3 ) )

Metrics