Abstract

We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
    [CrossRef] [PubMed]
  2. P. So, H. Kim, and I. Kochevar, “Two-photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express3, 339–350 (1998).
    [CrossRef] [PubMed]
  3. A. Kurella and N. B. Dahotre, “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” J. Biomater. Appl.20, 5–50 (2005).
    [CrossRef] [PubMed]
  4. M. Erdoǧan, B. Öktem, H. Kalaycioǧlu, S. Yavaş, P.K. Mukhopadhyay, K. Eken, K. Özgören, Y. Aykaç, U.H. Tazebay, and F. Ö. Ilday, “Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers,” Opt. Express19, 10986–10996 (2011).
    [CrossRef]
  5. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005).
    [CrossRef]
  6. S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2, 557–572 (2009).
    [CrossRef] [PubMed]
  7. M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
    [CrossRef] [PubMed]
  8. L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
    [CrossRef] [PubMed]
  9. W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
    [CrossRef]
  10. J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol.82, 267–291 (2007).
    [CrossRef] [PubMed]
  11. A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroenerget.2, 21 (2010).
  12. P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
    [CrossRef] [PubMed]
  13. I. L. Budunoǧlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett.34, 2516–2518 (2009).
    [CrossRef]
  14. K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett.36, 1299–1301 (2011).
    [CrossRef] [PubMed]
  15. F. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  16. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14, 10095–10100 (2006).
    [CrossRef] [PubMed]
  17. F. Ö. Ilday, H. Lim, J. R. Buckley, and F. Wise, “Practical all-fiber source of high-power, 120-fs pulses at 1 μm,” Opt. Lett.28, 1362–1364 (2003).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroenerget.2, 21 (2010).

2009 (3)

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

I. L. Budunoǧlu, C. Ülgüdür, B. Oktem, and F. Ö. Ilday, “Intensity noise of mode-locked fiber lasers,” Opt. Lett.34, 2516–2518 (2009).
[CrossRef]

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2, 557–572 (2009).
[CrossRef] [PubMed]

2007 (2)

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol.82, 267–291 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (3)

A. Kurella and N. B. Dahotre, “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” J. Biomater. Appl.20, 5–50 (2005).
[CrossRef] [PubMed]

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005).
[CrossRef]

2004 (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

2003 (1)

1998 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Aykaç, Y.

Ben-Yakar, A.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

Blinder, P.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

Buckley, J.

Buckley, J. R.

Budunoglu, I. L.

Buffelli, M.

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

Chen, Y.

Chisholm, A. D.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

Chong, A.

Chung, S. H.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2, 557–572 (2009).
[CrossRef] [PubMed]

Cinar, H.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

Cinar, H. N.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

Colombelli, J.

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol.82, 267–291 (2007).
[CrossRef] [PubMed]

Dahotre, N. B.

A. Kurella and N. B. Dahotre, “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” J. Biomater. Appl.20, 5–50 (2005).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Eken, K.

Erdogan, M.

Fukui, K.

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

Higashi, T.

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005).
[CrossRef]

Ilday, F. Ö.

Itoh, K.

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

Jasaitis, A.

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

Jin, Y.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

Kalaycioglu, H.

Kim, H.

Kleinfeld, D.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

Kochevar, I.

Kurella, A.

A. Kurella and N. B. Dahotre, “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” J. Biomater. Appl.20, 5–50 (2005).
[CrossRef] [PubMed]

Li, M.-J.

Li, S.

Li, X.

Lim, H.

Mascaro, A. L. A.

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroenerget.2, 21 (2010).

Masi, A.

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

Matsunaga, S.

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

Mazur, E.

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2, 557–572 (2009).
[CrossRef] [PubMed]

Migliori, B. J.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

Mukhopadhyay, P.K.

Murari, K.

Neev, J.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005).
[CrossRef]

O’Connor, R. P.

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

Oktem, B.

Öktem, B.

Özgören, K.

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005).
[CrossRef]

Pavone, F. S.

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroenerget.2, 21 (2010).

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

Renninger, W.

Reynaud, E. G.

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol.82, 267–291 (2007).
[CrossRef] [PubMed]

Sacconi, L.

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroenerget.2, 21 (2010).

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

Shimada, T.

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

So, P.

Squier, J. A.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

Stelzer, E. H. K.

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol.82, 267–291 (2007).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Tazebay, U.H.

Tsai, P. S.

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

Ülgüdür, C.

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005).
[CrossRef]

Watanabe, W.

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Wise, F.

Yanik, M. F.

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

Yavas, S.

Zhang, Y.

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B81, 1015–1047 (2005).
[CrossRef]

Curr. Opin. Biotechnol. (1)

P. S. Tsai, P. Blinder, B. J. Migliori, J. Neev, Y. Jin, J. A. Squier, and D. Kleinfeld, “Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems,” Curr. Opin. Biotechnol.20, 90–99 (2009).
[CrossRef] [PubMed]

Front. Neuroenerget. (1)

A. L. A. Mascaro, L. Sacconi, and F. S. Pavone, “Multi-photon nanosurgery in live brain,” Front. Neuroenerget.2, 21 (2010).

IEEE J. Sel. Top. Quantum Electron. (1)

F. Wise, “Femtosecond fiber lasers based on dissipative processes for nonlinear microscopy,” IEEE J. Sel. Top. Quantum Electron. (to be published).

J. Biomater. Appl. (1)

A. Kurella and N. B. Dahotre, “Review paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering,” J. Biomater. Appl.20, 5–50 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

L. Sacconi, R. P. O’Connor, A. Jasaitis, A. Masi, M. Buffelli, and F. S. Pavone, “In vivo multiphoton nanosurgery on cortical neurons,” J. Biomed. Opt.12, 050502 (2007).
[CrossRef] [PubMed]

J. Biophotonics (1)

S. H. Chung and E. Mazur, “Surgical applications of femtosecond lasers,” J. Biophotonics2, 557–572 (2009).
[CrossRef] [PubMed]

Med. Laser Appl. (1)

W. Watanabe, S. Matsunaga, T. Shimada, T. Higashi, K. Fukui, and K. Itoh, “Femtosecond laser disruption of mitochondria in living cells,” Med. Laser Appl.20, 185–191 (2005).
[CrossRef]

Methods Cell Biol. (1)

J. Colombelli, E. G. Reynaud, and E. H. K. Stelzer, “Investigating relaxation processes in cells and developing organisms: from cell ablation to cytoskeleton nanosurgery,” Methods Cell Biol.82, 267–291 (2007).
[CrossRef] [PubMed]

Nature (1)

M. F. Yanik, H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, “Neurosurgery: functional regeneration after laser axotomy,” Nature432, 822 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248, 73–76 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup. FPGA: field programmable gate array; AOM: acousto-optic modulator. (b) Schematic of the laser-fluorescence microscope optics. (c) Schematic of the FPGA and analog electronic circuitry.

Fig. 2
Fig. 2

(a) Optical spectrum of the oscillator and amplifier outputs. (b) Autocorrelation of the amplified pulses after dechirping. Inset: Close-in RF spectrum around the repetition frequency. (c) Measured pulse train, exhibiting a complex pulse sequence as an example. Apparent variations in the pulse heights due to digital sampling are not real.

Fig. 3
Fig. 3

Tissue slice (mouse gastrocnemius muscle) (a) before and (b) after ablation; 4.08 MHz, 240-fs, 7-nJ. Fixed Saos-2 cells (c) before and (d) after sub-cellular surgery; 4.08 MHz, 240-fs, 7 nJ. (e) Before and (f) after ablation of single mitochondrion stained with Mitotracker Red 580; 4.08 MHz, 240-fs, 2 nJ. (g) and (h) Before and after femtosecond axotomy; 32.7 MHz, 240-fs, 8 nJ. White arrow in (h) indicates the micro-damage.

Metrics