Abstract

The purpose of this study is to get more efficient gold nanoparticles, for necrosis of cancer cells, in photothermal therapy. Therefore a numerical maximization of the absorption efficiency of a set of nanoparticles (nanorod, nanoshell and hollow nanosphere) is proposed, assuming that all the absorbed light is converted to heat. Two therapeutic cases (shallow and deep cancer) are considered. The numerical tools used in this study are the full Mie theory, the discrete dipole approximation and the particle swarm optimization. The optimization leads to an improved efficiency of the nanoparticles compared with previous studies. For the shallow cancer therapy, the hollow nanosphere seems to be more efficient than the other nanoparticles, whereas the hollow nanosphere and nanorod, offer comparable absorption efficiencies, for deep cancer therapy. Finally, a study of tolerance for the size parameters to guarantee an absorption efficiency threshold is included.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7(3), 206–214 (2008).
    [CrossRef]
  2. X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res.1(1), 13–28 (2010).
    [CrossRef]
  3. V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
    [CrossRef]
  4. F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, London, 1990).
  5. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
    [CrossRef] [PubMed]
  6. A. M. Schwartzberg and J. Z. Zhang, “Novel optical properties and emerging applications of metal nanostructures,” J. Phys. Chem. C112, 10323–10337 (2008).
    [CrossRef]
  7. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006).
    [CrossRef] [PubMed]
  8. H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
    [CrossRef]
  9. H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
    [CrossRef]
  10. K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
    [CrossRef]
  11. N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008).
    [CrossRef]
  12. J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater.20, 3866–3871 (2008).
    [CrossRef]
  13. T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
    [CrossRef] [PubMed]
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
    [CrossRef]
  15. S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in IEEE Congress on Evolutionary Computation (CEC 2011) (IEEE, 2011), pp. 2315–2320.
  16. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
    [CrossRef]
  17. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A25, 2693–2703 (2008).
    [CrossRef]
  18. H. Devoe, “Optical properties of molecular aggregates. I. classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
    [CrossRef]
  19. H. Devoe, “Optical properties of molecular aggregates. II. classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
    [CrossRef]
  20. E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astr. J.186, 705 (1973).
    [CrossRef]
  21. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994).
    [CrossRef]
  22. B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” (2010), http://arXiv.org/abs/1002.1505v1 .
  23. S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
    [CrossRef]
  24. D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proc. Int. Conf. Computers & Industrial Engineering CIE 2009 (2009), pp. 542–547.
    [CrossRef] [PubMed]
  25. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural Networks (IEEE, 1995), vol. IV, pp. 1942–1948.
  26. Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009).
    [CrossRef]
  27. D. H. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolut. Comput.1, 67–82 (1997).
    [CrossRef]
  28. S. Kessentini and D. Barchiesi, “A new strategy to improve particle swarm optimization exploration ability,” in 2010 Second WRI Global Congress onIntelligent Systems (GCIS) (IEEE, 2010), vol. 1, pp. 27 – 30.
  29. P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl.1, 45–66 (2008).
  30. C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010).
    [CrossRef]
  31. D. Pissuwan, S. M. Valenzuel, and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genetic Eng. Rev.25, 93–112 (2008).
    [CrossRef]
  32. C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
    [CrossRef]
  33. D. Barchiesi, D. S. Kessentini, and T. Grosges, “Sensitivity analysis for designing active particles in photothermal cancer therapy,” in Advances in Safety, Reliability and Risk Management, C. Bérenguer and A. Grall, eds. (Taylor & Francis, London, 2011), pp. 2197–2204.
  34. T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2(6), 1584–1596 (2011).
    [CrossRef] [PubMed]
  35. V. V. Tuchin, Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, Washington, 2007).
  36. J. Vera and Y. Bayazitoglu, “A note on laser penetration in nanoshell deposited tissue,” Int. J. Heat Mass Transfer52, 3402–3406 (2009).
    [CrossRef]
  37. J. Z. Zhang, “Biomedical application of shape-controlled plasmonic nanostructure: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
    [CrossRef]
  38. T. Qiu, W. Zhang, and P. K. Chu, “Recent progress in fabrication of anisotropic nanostructures for surface-enhanced raman spectroscopy,” Recent Patents Nanotechnol.3, 10–20 (2009).
    [CrossRef]
  39. F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010).
    [CrossRef]

2011 (2)

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
[CrossRef]

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2(6), 1584–1596 (2011).
[CrossRef] [PubMed]

2010 (4)

J. Z. Zhang, “Biomedical application of shape-controlled plasmonic nanostructure: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
[CrossRef]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010).
[CrossRef]

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010).
[CrossRef]

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res.1(1), 13–28 (2010).
[CrossRef]

2009 (5)

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proc. Int. Conf. Computers & Industrial Engineering CIE 2009 (2009), pp. 542–547.
[CrossRef] [PubMed]

Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009).
[CrossRef]

T. Qiu, W. Zhang, and P. K. Chu, “Recent progress in fabrication of anisotropic nanostructures for surface-enhanced raman spectroscopy,” Recent Patents Nanotechnol.3, 10–20 (2009).
[CrossRef]

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

J. Vera and Y. Bayazitoglu, “A note on laser penetration in nanoshell deposited tissue,” Int. J. Heat Mass Transfer52, 3402–3406 (2009).
[CrossRef]

2008 (9)

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A25, 2693–2703 (2008).
[CrossRef]

T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
[CrossRef] [PubMed]

D. Pissuwan, S. M. Valenzuel, and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genetic Eng. Rev.25, 93–112 (2008).
[CrossRef]

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7(3), 206–214 (2008).
[CrossRef]

P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl.1, 45–66 (2008).

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008).
[CrossRef]

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater.20, 3866–3871 (2008).
[CrossRef]

A. M. Schwartzberg and J. Z. Zhang, “Novel optical properties and emerging applications of metal nanostructures,” J. Phys. Chem. C112, 10323–10337 (2008).
[CrossRef]

2006 (4)

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006).
[CrossRef] [PubMed]

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
[CrossRef]

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
[CrossRef]

K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef]

2005 (1)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

2003 (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

1997 (1)

D. H. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolut. Comput.1, 67–82 (1997).
[CrossRef]

1994 (1)

1973 (1)

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astr. J.186, 705 (1973).
[CrossRef]

1965 (1)

H. Devoe, “Optical properties of molecular aggregates. II. classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
[CrossRef]

1964 (1)

H. Devoe, “Optical properties of molecular aggregates. I. classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
[CrossRef]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Barchiesi, D.

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2(6), 1584–1596 (2011).
[CrossRef] [PubMed]

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
[CrossRef]

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proc. Int. Conf. Computers & Industrial Engineering CIE 2009 (2009), pp. 542–547.
[CrossRef] [PubMed]

T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
[CrossRef] [PubMed]

S. Kessentini and D. Barchiesi, “A new strategy to improve particle swarm optimization exploration ability,” in 2010 Second WRI Global Congress onIntelligent Systems (GCIS) (IEEE, 2010), vol. 1, pp. 27 – 30.

D. Barchiesi, D. S. Kessentini, and T. Grosges, “Sensitivity analysis for designing active particles in photothermal cancer therapy,” in Advances in Safety, Reliability and Risk Management, C. Bérenguer and A. Grall, eds. (Taylor & Francis, London, 2011), pp. 2197–2204.

S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in IEEE Congress on Evolutionary Computation (CEC 2011) (IEEE, 2011), pp. 2315–2320.

Bayazitoglu, Y.

J. Vera and Y. Bayazitoglu, “A note on laser penetration in nanoshell deposited tissue,” Int. J. Heat Mass Transfer52, 3402–3406 (2009).
[CrossRef]

Bhattacharya, R.

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
[CrossRef]

Chen, P. C.

P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl.1, 45–66 (2008).

Chu, P. K.

T. Qiu, W. Zhang, and P. K. Chu, “Recent progress in fabrication of anisotropic nanostructures for surface-enhanced raman spectroscopy,” Recent Patents Nanotechnol.3, 10–20 (2009).
[CrossRef]

Chung, H. S.-H.

Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009).
[CrossRef]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuel, and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genetic Eng. Rev.25, 93–112 (2008).
[CrossRef]

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008).
[CrossRef]

Day, D.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater.20, 3866–3871 (2008).
[CrossRef]

de la Chapelle, M. L.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in IEEE Congress on Evolutionary Computation (CEC 2011) (IEEE, 2011), pp. 2315–2320.

Devoe, H.

H. Devoe, “Optical properties of molecular aggregates. II. classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
[CrossRef]

H. Devoe, “Optical properties of molecular aggregates. I. classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
[CrossRef]

Draine, B. T.

Duck, F. A.

F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, London, 1990).

Eberhart, R.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural Networks (IEEE, 1995), vol. IV, pp. 1942–1948.

El-Sayed, I. H.

K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef]

El-Sayed, M. A.

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res.1(1), 13–28 (2010).
[CrossRef]

K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

Flatau, P. J.

Ford, M. J.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008).
[CrossRef]

Giraud-Moreau, L.

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
[CrossRef]

Gréhan, G.

Grosges, T.

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2(6), 1584–1596 (2011).
[CrossRef] [PubMed]

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
[CrossRef]

T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
[CrossRef] [PubMed]

D. Barchiesi, D. S. Kessentini, and T. Grosges, “Sensitivity analysis for designing active particles in photothermal cancer therapy,” in Advances in Safety, Reliability and Risk Management, C. Bérenguer and A. Grall, eds. (Taylor & Francis, London, 2011), pp. 2197–2204.

S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in IEEE Congress on Evolutionary Computation (CEC 2011) (IEEE, 2011), pp. 2315–2320.

Gu, M.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater.20, 3866–3871 (2008).
[CrossRef]

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Harris, N.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008).
[CrossRef]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Huang, X.

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res.1(1), 13–28 (2010).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
[CrossRef]

Kennedy, J.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural Networks (IEEE, 1995), vol. IV, pp. 1942–1948.

Kessentini, D. S.

D. Barchiesi, D. S. Kessentini, and T. Grosges, “Sensitivity analysis for designing active particles in photothermal cancer therapy,” in Advances in Safety, Reliability and Risk Management, C. Bérenguer and A. Grall, eds. (Taylor & Francis, London, 2011), pp. 2197–2204.

Kessentini, S.

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2(6), 1584–1596 (2011).
[CrossRef] [PubMed]

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in IEEE Congress on Evolutionary Computation (CEC 2011) (IEEE, 2011), pp. 2315–2320.

S. Kessentini and D. Barchiesi, “A new strategy to improve particle swarm optimization exploration ability,” in 2010 Second WRI Global Congress onIntelligent Systems (GCIS) (IEEE, 2010), vol. 1, pp. 27 – 30.

Lamy de la Chapelle, M.

Lee, K. S.

K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

Leeuwen, T. V.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Li, B. Q.

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7(3), 206–214 (2008).
[CrossRef]

Li, J. L.

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater.20, 3866–3871 (2008).
[CrossRef]

Li, Y.

Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009).
[CrossRef]

Liu, C.

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7(3), 206–214 (2008).
[CrossRef]

Macready, W.

D. H. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolut. Comput.1, 67–82 (1997).
[CrossRef]

Manohar, S.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Matteini, P.

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010).
[CrossRef]

Mi, C. C.

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7(3), 206–214 (2008).
[CrossRef]

Mukherjee, P.

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010).
[CrossRef]

Mukhopadhyay, D.

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010).
[CrossRef]

Mulvaney, P.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008).
[CrossRef]

Mwakwari, S. C.

P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl.1, 45–66 (2008).

Nariai, A.

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
[CrossRef]

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
[CrossRef]

Niidome, T.

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
[CrossRef]

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
[CrossRef]

Niidome, Y.

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
[CrossRef]

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
[CrossRef]

Olson, T. Y.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006).
[CrossRef] [PubMed]

Oyelere, A. K.

P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl.1, 45–66 (2008).

Patra, C. R.

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010).
[CrossRef]

Pennypacker, C. R.

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astr. J.186, 705 (1973).
[CrossRef]

Pini, R.

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010).
[CrossRef]

Pissuwan, D.

D. Pissuwan, S. M. Valenzuel, and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genetic Eng. Rev.25, 93–112 (2008).
[CrossRef]

Prashant, K. J.

K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Purcell, E.

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astr. J.186, 705 (1973).
[CrossRef]

Pustovalov, V. K.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Qiu, T.

T. Qiu, W. Zhang, and P. K. Chu, “Recent progress in fabrication of anisotropic nanostructures for surface-enhanced raman spectroscopy,” Recent Patents Nanotechnol.3, 10–20 (2009).
[CrossRef]

Ratto, F.

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010).
[CrossRef]

Rayavarapu, R. G.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Rossi, F.

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010).
[CrossRef]

Schwartzberg, A. M.

A. M. Schwartzberg and J. Z. Zhang, “Novel optical properties and emerging applications of metal nanostructures,” J. Phys. Chem. C112, 10323–10337 (2008).
[CrossRef]

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006).
[CrossRef] [PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Smetannikov, A. S.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Takahashi, H.

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
[CrossRef]

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
[CrossRef]

Talley, C. E.

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006).
[CrossRef] [PubMed]

Toury, T.

Tuchin, V. V.

V. V. Tuchin, Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, Washington, 2007).

Ungureanu, C.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Valenzuel, S. M.

D. Pissuwan, S. M. Valenzuel, and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genetic Eng. Rev.25, 93–112 (2008).
[CrossRef]

Vera, J.

J. Vera and Y. Bayazitoglu, “A note on laser penetration in nanoshell deposited tissue,” Int. J. Heat Mass Transfer52, 3402–3406 (2009).
[CrossRef]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Wolpert, D. H.

D. H. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolut. Comput.1, 67–82 (1997).
[CrossRef]

Yamada, S.

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
[CrossRef]

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
[CrossRef]

Zhan, Z.-H.

Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009).
[CrossRef]

Zhang, J.

Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009).
[CrossRef]

Zhang, J. Z.

J. Z. Zhang, “Biomedical application of shape-controlled plasmonic nanostructure: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
[CrossRef]

A. M. Schwartzberg and J. Z. Zhang, “Novel optical properties and emerging applications of metal nanostructures,” J. Phys. Chem. C112, 10323–10337 (2008).
[CrossRef]

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006).
[CrossRef] [PubMed]

Zhang, W.

T. Qiu, W. Zhang, and P. K. Chu, “Recent progress in fabrication of anisotropic nanostructures for surface-enhanced raman spectroscopy,” Recent Patents Nanotechnol.3, 10–20 (2009).
[CrossRef]

Zharov, V. P.

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Adv. Drug Delivery Rev. (1)

C. R. Patra, R. Bhattacharya, D. Mukhopadhyay, and P. Mukherjee, “Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer,” Adv. Drug Delivery Rev.62, 346–361 (2010).
[CrossRef]

Adv. Mater. (1)

J. L. Li, D. Day, and M. Gu, “Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods,” Adv. Mater.20, 3866–3871 (2008).
[CrossRef]

Astr. J. (1)

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astr. J.186, 705 (1973).
[CrossRef]

Biomed. Opt. Express (1)

Biotechnol. Genetic Eng. Rev. (1)

D. Pissuwan, S. M. Valenzuel, and M. B. Cortie, “Prospects for gold nanorod particles in diagnostic and therapeutic applications,” Biotechnol. Genetic Eng. Rev.25, 93–112 (2008).
[CrossRef]

Chem. Lett. (1)

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Gold nanorod-sensitized cell death: microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods,” Chem. Lett.35, 500–501 (2006).
[CrossRef]

Gold Bull. (1)

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case of gold rods and shells,” Gold Bull.41, 5–14 (2008).
[CrossRef]

IEEE Trans. Evolut. Comput. (1)

D. H. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evolut. Comput.1, 67–82 (1997).
[CrossRef]

IEEE Trans. Nanobiosci. (1)

C. Liu, C. C. Mi, and B. Q. Li, “Energy absorption of gold nanoshells in hyperthermia therapy,” IEEE Trans. Nanobiosci.7(3), 206–214 (2008).
[CrossRef]

IEEE Trans. Syst. Man Cybern. Part B Cybern. (1)

Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, “Adaptive particle swarm optimization,” IEEE Trans. Syst. Man Cybern. Part B Cybern.39, 1362–1381 (2009).
[CrossRef]

Int. J. Appl. Metaheuristic Comput. (IJAMC) (1)

S. Kessentini, D. Barchiesi, T. Grosges, L. Giraud-Moreau, and M. L. de la Chapelle, “Adaptive non-uniform particle swarm application to plasmonic design,” Int. J. Appl. Metaheuristic Comput. (IJAMC)2, 18–28 (2011).
[CrossRef]

Int. J. Heat Mass Transfer (1)

J. Vera and Y. Bayazitoglu, “A note on laser penetration in nanoshell deposited tissue,” Int. J. Heat Mass Transfer52, 3402–3406 (2009).
[CrossRef]

J. Adv. Res. (1)

X. Huang and M. A. El-Sayed, “Gold nanoparticles optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Adv. Res.1(1), 13–28 (2010).
[CrossRef]

J. Appl. Phys. (1)

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. V. Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: Choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

J. Chem. Phys. (2)

H. Devoe, “Optical properties of molecular aggregates. I. classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
[CrossRef]

H. Devoe, “Optical properties of molecular aggregates. II. classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
[CrossRef]

J. Nanoparticle Res. (1)

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanoparticle Res.12, 2029–2036 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Phys. Chem. B (3)

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, “Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,” J. Phys. Chem. B110,, 19935–19944 (2006).
[CrossRef] [PubMed]

K. J. Prashant, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: application in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef]

J. Phys. Chem. C (1)

A. M. Schwartzberg and J. Z. Zhang, “Novel optical properties and emerging applications of metal nanostructures,” J. Phys. Chem. C112, 10323–10337 (2008).
[CrossRef]

J. Phys. Chem. Lett. (1)

J. Z. Zhang, “Biomedical application of shape-controlled plasmonic nanostructure: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,” J. Phys. Chem. Lett.1, 686–695 (2010).
[CrossRef]

Laser Phys. Lett. (1)

V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, “Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses,” Laser Phys. Lett.5(11), 775–792 (2008).
[CrossRef]

Nanotechnol. Sci. Appl. (1)

P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnol. Sci. Appl.1, 45–66 (2008).

Nanotechnology (1)

H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, and S. Yamada, “Photothermal reshaping of gold nanorods prevent further cell death,” Nanotechnology17, 4431–4435 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. Int. Conf. Computers & Industrial Engineering CIE 2009 (1)

D. Barchiesi, “Adaptive non-uniform, hyper-ellitist evolutionary method for the optimization of plasmonic biosensors,” in Proc. Int. Conf. Computers & Industrial Engineering CIE 2009 (2009), pp. 542–547.
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100, 13549–13554 (2003).
[CrossRef] [PubMed]

Recent Patents Nanotechnol. (1)

T. Qiu, W. Zhang, and P. K. Chu, “Recent progress in fabrication of anisotropic nanostructures for surface-enhanced raman spectroscopy,” Recent Patents Nanotechnol.3, 10–20 (2009).
[CrossRef]

Other (8)

F. A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book (Academic, London, 1990).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998).
[CrossRef]

S. Kessentini, D. Barchiesi, T. Grosges, and M. L. de la Chapelle, “Particle swarm optimization and evolutionary methods for plasmonic biomedical applications,” in IEEE Congress on Evolutionary Computation (CEC 2011) (IEEE, 2011), pp. 2315–2320.

J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference on Neural Networks (IEEE, 1995), vol. IV, pp. 1942–1948.

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” (2010), http://arXiv.org/abs/1002.1505v1 .

S. Kessentini and D. Barchiesi, “A new strategy to improve particle swarm optimization exploration ability,” in 2010 Second WRI Global Congress onIntelligent Systems (GCIS) (IEEE, 2010), vol. 1, pp. 27 – 30.

D. Barchiesi, D. S. Kessentini, and T. Grosges, “Sensitivity analysis for designing active particles in photothermal cancer therapy,” in Advances in Safety, Reliability and Risk Management, C. Bérenguer and A. Grall, eds. (Taylor & Francis, London, 2011), pp. 2197–2204.

V. V. Tuchin, Tissue optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, Bellingham, Washington, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Photothermal therapy using gold nanoparticles.

Fig. 2
Fig. 2

Spherical nanoparticle: nanoshell or hollow nanosphere (inner radius r1, outer radius r2 and shell thickness e = r2r1)

Fig. 3
Fig. 3

Comparison of DDA with Mie theory for different values of the inter-dipole distance d for a sphere of radius 40 nm.

Fig. 4
Fig. 4

Different shapes for modeling nanorods.

Fig. 5
Fig. 5

Extinction (blue curve), absorption (green) and scattering (red) efficiencies for optimized nanoparticles (Mie theory and linear polarization are used to evaluate (a)–(d), and DDA and circular polarization are used for (e)–(j)). The geometrical parameters (Figs. 2 and 4) of each optimized nanoparticle can be found in Tab. 1.

Fig. 6
Fig. 6

Comparison of the absorption band of optimized capped cylinder and hollow nanosphere (Tab. 1), DDA is used to get the spectra of capped cylinder and Mie theory is used to get spectra of hollow nanosphere.

Fig. 7
Fig. 7

Maximal absorption efficiencies of hollow nanosphere and nanorod for wavelengths within the quarter of the bandwidth of the illumination i.e. 800±25 nm.

Fig. 8
Fig. 8

Size parameters (shell thickness e and inner radius r1) of hollow nanosphere ensuring 90% of maximal absorption efficiency of hollow nanosphere in therapeutic case 1 (nanoparticles injected in skin dermis and illuminated by a 633 nm laser) and case 2 (nanoparticles injected in subcutaneous fat and illuminated by a 800 nm laser).

Tables (2)

Tables Icon

Table 1 Optimized shape parameters (Figs. 2 and 4) of gold nanoparticles in the two therapeutic cases: case 1, the nanoparticles are embedded in skin dermis, using 633 nm illumination wavelength; case 2, the nanoparticles are embedded in subcutaneous fat, using 800 nm illumination wavelength.

Tables Icon

Table 2 Design tolerance for the size parameters (min-max values) for a threshold 90% of maximal absorption efficiency (obtained from the optimum setting of the size parameters) in both therapeutic cases.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q a b s = C a b s π r 2 2 = 2 y 2 n = 1 [ ( 2 n + 1 ) { ( ( a n + b n ) ( | a n | 2 + | b n | 2 ) ) } ] ,
C a b s = 4 π k | E 0 | 2 j = 1 N { Im [ P j ( α j 1 ) * P j * ] 2 3 k 3 | P j | 2 } .
V ( t + 1 ) = ω V ( t ) + U 1 c 1 ( p ( t ) x ( t ) ) + U 2 c 2 ( g ( t ) x ( t ) ) ,
x ( t + 1 ) = x ( t ) + V ( t + 1 ) ,

Metrics