Abstract

We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).
  3. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
    [CrossRef] [PubMed]
  4. Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express17(5), 4046–4060 (2009).
    [CrossRef] [PubMed]
  5. F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
    [CrossRef] [PubMed]
  6. I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
    [CrossRef] [PubMed]
  7. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
    [CrossRef] [PubMed]
  8. D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).
  9. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
    [CrossRef]
  10. A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).
  11. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A14(6), 1231–1242 (1997).
    [CrossRef]
  12. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics4(1), 95–105 (1999).
    [CrossRef]
  13. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A22(4), 593–596 (2005).
    [CrossRef]
  14. N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
    [CrossRef] [PubMed]
  15. P. Lee, W. Gao, and X. Zhang, “Speckle properties of the logarithmically transformed signal in optical coherence tomography,” J. Opt. Soc. Am. A28(4), 517–522 (2011).
    [CrossRef]
  16. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
    [CrossRef]
  17. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
    [CrossRef] [PubMed]
  18. L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
    [PubMed]
  19. M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics49(1), 99–107 (2010).
    [CrossRef] [PubMed]
  20. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
    [CrossRef] [PubMed]
  21. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
    [CrossRef] [PubMed]
  22. B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
    [CrossRef] [PubMed]
  23. T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).
  24. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
    [CrossRef]
  25. R. D. Ferguson, D. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
    [CrossRef] [PubMed]
  26. M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology47(4), 641–655 (2002).
    [CrossRef] [PubMed]
  27. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A22(11), 2366–2371 (2005).
    [CrossRef]
  28. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18(8), 8338–8352 (2010).
    [CrossRef] [PubMed]
  29. H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging26(6), 761–771 (2007).
    [CrossRef] [PubMed]
  30. R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
    [CrossRef]
  31. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express17(2), 733–746 (2009).
    [CrossRef] [PubMed]
  32. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters29(24), 2878–2880 (2004).
    [CrossRef]
  33. S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics14(1), 014,031 (2009).
    [CrossRef]
  34. Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
    [CrossRef] [PubMed]
  35. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007).
    [CrossRef]
  36. W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
    [CrossRef]
  37. N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention11(1), 951–958 (2008).
    [PubMed]
  38. A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery2(5), 255–264 (2008).
    [CrossRef]
  39. A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008).
    [CrossRef] [PubMed]
  40. G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics103, 281–299 (1995).
    [CrossRef]
  41. I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE22(6), 123 – 151 (2005).
    [CrossRef]
  42. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on 20(9), 900–916 (2001).
    [CrossRef]
  43. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
    [CrossRef] [PubMed]
  44. M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics29(4), 432–441 (2007).
    [CrossRef] [PubMed]

2011

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

P. Lee, W. Gao, and X. Zhang, “Speckle properties of the logarithmically transformed signal in optical coherence tomography,” J. Opt. Soc. Am. A28(4), 517–522 (2011).
[CrossRef]

2010

A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18(8), 8338–8352 (2010).
[CrossRef] [PubMed]

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics49(1), 99–107 (2010).
[CrossRef] [PubMed]

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
[CrossRef] [PubMed]

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

2009

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics14(1), 014,031 (2009).
[CrossRef]

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express17(2), 733–746 (2009).
[CrossRef] [PubMed]

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express17(5), 4046–4060 (2009).
[CrossRef] [PubMed]

2008

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention11(1), 951–958 (2008).
[PubMed]

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery2(5), 255–264 (2008).
[CrossRef]

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008).
[CrossRef] [PubMed]

2007

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics29(4), 432–441 (2007).
[CrossRef] [PubMed]

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging26(6), 761–771 (2007).
[CrossRef] [PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007).
[CrossRef]

2006

2005

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A22(4), 593–596 (2005).
[CrossRef]

D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A22(11), 2366–2371 (2005).
[CrossRef]

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE22(6), 123 – 151 (2005).
[CrossRef]

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
[CrossRef] [PubMed]

2004

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters29(24), 2878–2880 (2004).
[CrossRef]

R. D. Ferguson, D. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

2003

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

2002

M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology47(4), 641–655 (2002).
[CrossRef] [PubMed]

2001

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on 20(9), 900–916 (2001).
[CrossRef]

2000

1999

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics4(1), 95–105 (1999).
[CrossRef]

1997

1995

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics103, 281–299 (1995).
[CrossRef]

1993

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).

1991

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Abramoff, M. D.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

Adler, D. C.

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters29(24), 2878–2880 (2004).
[CrossRef]

Akkin, T.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Ansari-Shahrezaei, S.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Araújo, A.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

Azzabou, N.

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention11(1), 951–958 (2008).
[PubMed]

Baleanu, D.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

Baraniuk, R.

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE22(6), 123 – 151 (2005).
[CrossRef]

Barbeiro, S.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

Baroni, M.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics29(4), 432–441 (2007).
[CrossRef] [PubMed]

Bashkansky, M.

Baumann, B.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

Beaton, S.

Bernardes, R.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

Bilenca, A.

Binder, S.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Bizheva, K.

Bonin, T.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Boppart, S. A.

Borsdorf, A.

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery2(5), 255–264 (2008).
[CrossRef]

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008).
[CrossRef] [PubMed]

Bouma, B. E.

Boyer, K.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on 20(9), 900–916 (2001).
[CrossRef]

Brannath, W.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Bruni, C.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

Buades, A.

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

Cense, B.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Chan, R.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
[CrossRef] [PubMed]

Chitchian, S.

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics14(1), 014,031 (2009).
[CrossRef]

Chiu, S. J.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

Christensen, U.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).

Clausi, D. A.

Coll, B.

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

Correnti, A.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Cunha-Vaz, J.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

de Boer, J.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

de Juan, J.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

de Salvo, G.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Desjardins, A. E.

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).

Duker, J. S.

Farsiu, S.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).

Ferguson, R. D.

Fernandez, D. C.

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging26(6), 761–771 (2007).
[CrossRef] [PubMed]

Ferrone, C.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

Fiddy, M. A.

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics14(1), 014,031 (2009).
[CrossRef]

Flohr, T.

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fortunato, P.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics29(4), 432–441 (2007).
[CrossRef] [PubMed]

Fried, N. M.

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics14(1), 014,031 (2009).
[CrossRef]

Fujimoto, J. G.

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express17(5), 4046–4060 (2009).
[CrossRef] [PubMed]

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters29(24), 2878–2880 (2004).
[CrossRef]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gao, W.

Garvin, M. K.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

Giannini, D.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

Gorczynska, I.

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
[CrossRef] [PubMed]

Götzinger, E.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grzywacz, N. M.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

Guedes, V.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Guo, W.

W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
[CrossRef]

Haas, P.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Hagen, S.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Hammer, D.

Hassler, K.

Hee, M.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hertzmark, E.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Hitzenberger, C. K.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).

Ho, J.

Horn, F. K.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

Hornegger, J.

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008).
[CrossRef] [PubMed]

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery2(5), 255–264 (2008).
[CrossRef]

Hougaard, J.

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
[CrossRef] [PubMed]

Huang, D.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, F.

W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
[CrossRef]

Huettmann, G.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Hughes, M.

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics49(1), 99–107 (2010).
[CrossRef] [PubMed]

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

Izatt, J. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

Jadwiga Rogowska, M. E. B.

M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology47(4), 641–655 (2002).
[CrossRef] [PubMed]

Jian, Z.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
[CrossRef] [PubMed]

Joo, C.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Jrgensen, T. M.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
[CrossRef] [PubMed]

Juenemann, A.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

Juenemann, A. G.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).

Karamata, B.

Kardon, R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

Kingsbury, N.

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE22(6), 123 – 151 (2005).
[CrossRef]

Knüttel, A.

Ko, T. H.

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters29(24), 2878–2880 (2004).
[CrossRef]

Koch, G.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

Koozekanani, D.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on 20(9), 900–916 (2001).
[CrossRef]

Krebs, I.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Kruse, F. E.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

Laemmer, R.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

Larsen, M.

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
[CrossRef] [PubMed]

Lasser, T.

Laubscher, M.

Lederer, D.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Lee, P.

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
[CrossRef] [PubMed]

Leitgeb, R. A.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

Li, X. T.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J.

Maduro, C.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

Mancini, R.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Mardin, C. Y.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

Marks, D. L.

Mattox, C.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Mishra, A.

Morel, J. M.

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

Moreno, G.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Mueller, H.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Mujat, M.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Nason, G.

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics103, 281–299 (1995).
[CrossRef]

Nicholas, P.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

Ozcan, A.

Pakter, H. M.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Paragios, N.

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention11(1), 951–958 (2008).
[PubMed]

Park, B.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Paunescu, L. A.

Pedut-Kloizman, T.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Pircher, M.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
[CrossRef] [PubMed]

Podoleanu, A.

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics49(1), 99–107 (2010).
[CrossRef] [PubMed]

Puliafito, C.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Puvanathasan, P.

Ralston, T. S.

Ramrath, L.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Rao, B.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
[CrossRef] [PubMed]

Raupach, R.

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008).
[CrossRef] [PubMed]

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery2(5), 255–264 (2008).
[CrossRef]

Reintjes, J.

Roberts, C.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on 20(9), 900–916 (2001).
[CrossRef]

Roessler, C. W.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

Russell, S. R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

Russo, V.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

Salinas, H. M.

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging26(6), 761–771 (2007).
[CrossRef] [PubMed]

Sander, B.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
[CrossRef] [PubMed]

Sattmann, H.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics4(1), 95–105 (1999).
[CrossRef]

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A14(6), 1231–1242 (1997).
[CrossRef]

Schmoll, T.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

Schuman, J.

Schuman, J. S.

R. D. Ferguson, D. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Schweikard, A.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Selesnick, I.

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE22(6), 123 – 151 (2005).
[CrossRef]

Serranho, P.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

Silverman, B.

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics103, 281–299 (1995).
[CrossRef]

Soliman, W.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).

Sonka, M.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

Spring, M.

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics49(1), 99–107 (2010).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tan, O.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

Thomadsen, J.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).

Thrane, L.

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
[CrossRef] [PubMed]

Tornow, R. P.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

Torre, A. L.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics29(4), 432–441 (2007).
[CrossRef] [PubMed]

Toth, C. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

Tromberg, B. J.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
[CrossRef] [PubMed]

Vakoc, B. J.

Velazquez, L.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Voskanian, S.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Vuong, L. N.

Witkin, A. J.

Wollstein, G.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Womastek, I.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

Wong, A.

Wu, X.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics4(1), 95–105 (1999).
[CrossRef]

Yu, L.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
[CrossRef] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics4(1), 95–105 (1999).
[CrossRef]

Zhang, X.

Amer. J. Ophthalmology.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology.116(1), 113–114 (1993).

Applied Optics

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics49(1), 99–107 (2010).
[CrossRef] [PubMed]

British Journal of Ophthalmology

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology89(2), 207–212 (2005).
[CrossRef] [PubMed]

IEEE Transactions on Medical Imaging

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging, 29(6), 1224 –1237 (2010).
[CrossRef] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging27(10), 1495 – 1505 (2008).
[CrossRef] [PubMed]

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging26(6), 761–771 (2007).
[CrossRef] [PubMed]

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging27(12), 1685–1703 (2008).
[CrossRef] [PubMed]

International Journal of Computer Assisted Radiology and Surgery

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery2(5), 255–264 (2008).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci.50(5), 1971–1977 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt.12(4), 041,208 (2007).

J. Glaucoma

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma19(7), 475–482 (2009).

J. Opt. Soc. Am. A

Journal of Biomedical Optics

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics14(1), 014,031 (2009).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics8(3), 565–569 (2003).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics4(1), 95–105 (1999).
[CrossRef]

Lecture Notes in Statistics

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics103, 281–299 (1995).
[CrossRef]

Medical Engineering & Physics

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics29(4), 432–441 (2007).
[CrossRef] [PubMed]

Medical Image Computing and Computer-Assisted Intervention

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention11(1), 951–958 (2008).
[PubMed]

Medical Imaging IEEE Transactions

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on 20(9), 900–916 (2001).
[CrossRef]

Ophthalmology

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology117(8), 1577–1584 (2010).
[CrossRef] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology110(1), 177–189 (2003).
[CrossRef] [PubMed]

Opt. Express

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express18(18), 19,413–19,428 (2010).
[CrossRef]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express19(15), 14,568–14,585 (2011).
[CrossRef]

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express18(23), 24,048–24,059 (2010).
[CrossRef]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
[CrossRef] [PubMed]

P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express17(2), 733–746 (2009).
[CrossRef] [PubMed]

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express17(5), 4046–4060 (2009).
[CrossRef] [PubMed]

A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18(8), 8338–8352 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Optics Express

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express18(2), 1024–1032 (2010).
[CrossRef] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express13(23), 9480–9491 (2005).
[CrossRef] [PubMed]

Optics Letters

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters29(24), 2878–2880 (2004).
[CrossRef]

Physics in Medicine and Biology

M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology47(4), 641–655 (2002).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and , “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Signal Processing Magazine IEEE

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE22(6), 123 – 151 (2005).
[CrossRef]

Other

W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
[CrossRef]

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example images from the pig eye dataset. (a) Gold standard image, created by averaging 455 frames. An exemplary region is magnified, indicated by the white rectangle. To allow a better visual comparison, this region will also be magnified on all subsequent images shown in this work. (b) Average of 8 randomly selected frames. For display reasons, this image and the remaining images in this work are cropped. (c, d) Single frames from the averaged dataset in (b).

Fig. 2
Fig. 2

Flow diagram of the proposed multiframe denoising algorithm. The single images Fi are scaled with a logarithmic transformation and wavelet decomposed. Weights are estimated from the wavelet coefficients and applied to the detail coefficients. Averaging in the wavelet domain and a wavelet reconstruction yields the final image R.

Fig. 3
Fig. 3

Gold standard image with the regions of interest marked for the two evaluation metrics. Red rectangle regions are used in the SNRgain measurement. Blue rectangle regions are used in the FWHMred measurements.

Fig. 4
Fig. 4

Sharpness reduction as measured by the full-width-half-maximum reduction (FWHMred ) plotted against noise reduction as measured by the signal-to-noise gain (SNRgain) for 8 frames and 5 wavelet levels using the wavelet multiframe noise reduction method. Results are shown for: Significance weight (parameter k varied) and discrete stationary wavelet transform with Haar wavelets (DSWT); significance weight (parameter k varied) and dual tree complex wavelet transformation (DTCWT); correlation weight (parameter p varied) and DSWT; correlation weight (parameter p varied) and DTCWT; combination of significance and correlation weight (parameter k and p* varied) and DSWT; combination of significance and correlation weight (parameter k and p* varied) and DTCWT.

Fig. 5
Fig. 5

Sharpness reduction as measured by the full-width-half-maximum reduction (FWHMred ) plotted against noise reduction as measured by the signal-to-noise gain (SNRgain) for 4 frames and 5 wavelet levels using the wavelet multiframe noise reduction method. Results are shown for: Significance weight (parameter k varied) and discrete stationary wavelet transform with Haar wavelets (DSWT); significance weight (parameter k varied) and dual tree complex wavelet transformation (DTCWT); correlation weight (parameter p varied) and DSWT; correlation weight (parameter p varied) and DTCWT; combination of significance and correlation weight (parameter k and p* varied) and DSWT; combination of significance and correlation weight (parameter k and p* varied) and DTCWT.

Fig. 6
Fig. 6

Sharpness reduction as measured by the full-width-half-maximum reduction (FWHMred ) plotted against noise reduction as measured by the signal-to-noise gain (SNRgain) for 8 frames and 5 wavelet levels. Results are shown for: Wavelet soft thresholding with Haar wavelets and the discrete stationary wavelet transform (DSWT) (threshold varied); wavelet hard thresholding with dual tree complex wavelet transformation (DTCWT) (threshold varied); wavelet multiframe denoising with significance weight (parameter k varied); wavelet multiframe denoising with a combination of significance and correlation weight (parameter k and p* varied); median filtering (window size of 3 ×3 and 5 ×5 pixels). Additionaly, the results averaging of up to 40 frames are shown were an average of 8 frames holds as a reference. The results of averaging 16, 24, and 32 frames are marked with dots.

Fig. 7
Fig. 7

Result examples from the pig eye dataset, generated from the same 8 randomly selected frames: (a) Average. (b - e) Denoising results. Parameters for the methods were adjusted so that the SNRgain was roughly 100%. (b) Median filtering with a window size of 5 × 5 on the average of 8 frames. (c) Wavelet hard thresholding with dual tree wavelet on the average of the 8 frames. (d) Wavelet multiframe denoising using the significance weight with Haar wavelets. (e) Wavelets multiframe denoising using the combined significance and correlation weight with Haar wavelets.

Fig. 8
Fig. 8

Result examples from the human eye fundus dataset: (a) Average of 4 frames. (b - d) Denoising results. Parameters for the methods were adjusted such that the SNRgain was roughly 100%. (b) Median filtering on the average of 4 frames. (c) Wavelet hard thresholding with dual tree wavelet on the average of 4 frames. (d) Wavelets multiframe denoising using the combined significance and correlation weight with Haar wavelets.

Tables (1)

Tables Icon

Table 1 Quantitative evaluation results of the different denoising methods. The parameters were adjusted so that the signal-to-noise-ratio gain (SNRgain) was about 100%, with the exception of the wavelet soft thresholding using the Haar wavelet, where a SNRgain of 100 can not be achieved due to artifact generation.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

F i = S + N i
σ i ( x ) σ j ( x )
W ˜ i , D l ( x ) = G i , D l ( x ) W i , D l ( x )
W D l ( x ) = 1 N i = 1 N W ˜ i , D l ( x )
A l max ( x ) = 1 N i = 1 N A i l max ( x )
G D l ( x ) = { W D l ( x ) sgn ( W D l ( x ) ) τ W D l ( x ) , | W D l ( x ) | > τ 0 , otherwise
σ S , i , D l 2 ( x ) = 1 N 1 j = 1 j i N ( W i , D l ( x ) W j , D l ( x ) ) 2
G sig , i , D l ( x ) = { 1 , | W i , D l ( x ) | k σ S , i , D l ( x ) θ i ( W 1 , D l ( x ) , , W m , D l ( x ) ) , otherwise
θ i ( w 1 , , w m ) = 1 m 1 j = 0 j i m 1 | 1 w i w j |
G corr , i l ( x ) = med i j ( 1 2 Corr ( V i l ( x ) , V j l ( x ) ) + 1 ) p
G comb , i l ( x ) = G corr , i l ( x ) with p = p ^ ( 1 G sig , i , D l ( x ) ) 2 + 1
SNR 1 = σ ( S ) σ ( N ) , o r SNR 2 = μ ( S ) σ ( N )
SNR gain = SNR 1 ( F f ) SNR 1 ( F a ) 1 = SNR 2 ( F f ) SNR 2 ( F a ) 1 = σ ( N a ) σ ( N f ) 1
N a F a F g , N f F f F g
Γ ( x ) = q 1 + q 2 1 + exp ( x + q 3 q 4 )
Γ ( x ) = q 2 q 4 exp ( x + q 3 q 4 ) ( 1 + exp ( x + q 3 q 4 ) ) 2
FWHM = | q 4 ln ( 2 d + 1 1 4 d 2 d + 1 + 1 4 d ) | , with d = Γ ( q 3 ) q 4 q 2
FWHM red = FWHM ( F f ) FWHM ( F a ) 1

Metrics