Abstract

We introduce a novel speckle noise reduction algorithm for OCT images. Contrary to present approaches, the algorithm does not rely on simple averaging of multiple image frames or denoising on the final averaged image. Instead it uses wavelet decompositions of the single frames for a local noise and structure estimation. Based on this analysis, the wavelet detail coefficients are weighted, averaged and reconstructed. At a signal-to-noise gain at about 100% we observe only a minor sharpness decrease, as measured by a full-width-half-maximum reduction of 10.5%. While a similar signal-to-noise gain would require averaging of 29 frames, we achieve this result using only 8 frames as input to the algorithm. A possible application of the proposed algorithm is preprocessing in retinal structure segmentation algorithms, to allow a better differentiation between real tissue information and unwanted speckle noise.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).
  3. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
    [Crossref] [PubMed]
  4. Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express 17(5), 4046–4060 (2009).
    [Crossref] [PubMed]
  5. F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
    [Crossref] [PubMed]
  6. I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
    [Crossref] [PubMed]
  7. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
    [Crossref] [PubMed]
  8. D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).
  9. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
    [Crossref]
  10. A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).
  11. J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).
    [Crossref]
  12. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics 4(1), 95–105 (1999).
    [Crossref]
  13. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22(4), 593–596 (2005).
    [Crossref]
  14. N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
    [Crossref] [PubMed]
  15. P. Lee, W. Gao, and X. Zhang, “Speckle properties of the logarithmically transformed signal in optical coherence tomography,” J. Opt. Soc. Am. A 28(4), 517–522 (2011).
    [Crossref]
  16. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett. 25(8), 545–547 (2000).
    [Crossref]
  17. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
    [Crossref] [PubMed]
  18. L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
    [PubMed]
  19. M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics 49(1), 99–107 (2010).
    [Crossref] [PubMed]
  20. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express 14(11), 4736–4745 (2006).
    [Crossref] [PubMed]
  21. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
    [Crossref] [PubMed]
  22. B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
    [Crossref] [PubMed]
  23. T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).
  24. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
    [Crossref]
  25. R. D. Ferguson, D. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
    [Crossref] [PubMed]
  26. M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology 47(4), 641–655 (2002).
    [Crossref] [PubMed]
  27. D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A 22(11), 2366–2371 (2005).
    [Crossref]
  28. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338–8352 (2010).
    [Crossref] [PubMed]
  29. H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging 26(6), 761–771 (2007).
    [Crossref] [PubMed]
  30. R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
    [Crossref]
  31. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express 17(2), 733–746 (2009).
    [Crossref] [PubMed]
  32. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters 29(24), 2878–2880 (2004).
    [Crossref]
  33. S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics 14(1), 014,031 (2009).
    [Crossref]
  34. Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
    [Crossref] [PubMed]
  35. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
    [Crossref]
  36. W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
    [Crossref]
  37. N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention 11(1), 951–958 (2008).
    [PubMed]
  38. A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery 2(5), 255–264 (2008).
    [Crossref]
  39. A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging 27(12), 1685–1703 (2008).
    [Crossref] [PubMed]
  40. G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics 103, 281–299 (1995).
    [Crossref]
  41. I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE 22(6), 123 – 151 (2005).
    [Crossref]
  42. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on  20(9), 900–916 (2001).
    [Crossref]
  43. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
    [Crossref] [PubMed]
  44. M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics 29(4), 432–441 (2007).
    [Crossref] [PubMed]

2011 (2)

P. Lee, W. Gao, and X. Zhang, “Speckle properties of the logarithmically transformed signal in optical coherence tomography,” J. Opt. Soc. Am. A 28(4), 517–522 (2011).
[Crossref]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

2010 (7)

A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338–8352 (2010).
[Crossref] [PubMed]

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics 49(1), 99–107 (2010).
[Crossref] [PubMed]

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

2009 (5)

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express 17(5), 4046–4060 (2009).
[Crossref] [PubMed]

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express 17(2), 733–746 (2009).
[Crossref] [PubMed]

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics 14(1), 014,031 (2009).
[Crossref]

2008 (4)

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention 11(1), 951–958 (2008).
[PubMed]

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery 2(5), 255–264 (2008).
[Crossref]

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging 27(12), 1685–1703 (2008).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

2007 (4)

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging 26(6), 761–771 (2007).
[Crossref] [PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A 24(7), 1901–1910 (2007).
[Crossref]

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics 29(4), 432–441 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (5)

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, and S. A. Boppart, “Speckle reduction by I-divergence regularization in optical coherence tomography,” J. Opt. Soc. Am. A 22(11), 2366–2371 (2005).
[Crossref]

B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22(4), 593–596 (2005).
[Crossref]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE 22(6), 123 – 151 (2005).
[Crossref]

2004 (2)

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters 29(24), 2878–2880 (2004).
[Crossref]

R. D. Ferguson, D. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
[Crossref] [PubMed]

2003 (3)

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
[Crossref] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

2002 (1)

M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology 47(4), 641–655 (2002).
[Crossref] [PubMed]

2001 (1)

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on  20(9), 900–916 (2001).
[Crossref]

2000 (1)

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics 4(1), 95–105 (1999).
[Crossref]

1997 (1)

1995 (1)

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics 103, 281–299 (1995).
[Crossref]

1993 (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Abramoff, M. D.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

Adler, D. C.

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters 29(24), 2878–2880 (2004).
[Crossref]

Akkin, T.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Ansari-Shahrezaei, S.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Araújo, A.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

Azzabou, N.

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention 11(1), 951–958 (2008).
[PubMed]

Baleanu, D.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

Baraniuk, R.

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE 22(6), 123 – 151 (2005).
[Crossref]

Barbeiro, S.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

Baroni, M.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics 29(4), 432–441 (2007).
[Crossref] [PubMed]

Bashkansky, M.

Baumann, B.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

Beaton, S.

Bernardes, R.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

Bilenca, A.

Binder, S.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Bizheva, K.

Bonin, T.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Boppart, S. A.

Borsdorf, A.

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging 27(12), 1685–1703 (2008).
[Crossref] [PubMed]

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery 2(5), 255–264 (2008).
[Crossref]

Bouma, B. E.

Boyer, K.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on  20(9), 900–916 (2001).
[Crossref]

Brannath, W.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Bruni, C.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

Buades, A.

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

Cense, B.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Chan, R.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Chitchian, S.

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics 14(1), 014,031 (2009).
[Crossref]

Chiu, S. J.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

Christensen, U.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).

Clausi, D. A.

Coll, B.

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

Correnti, A.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Cunha-Vaz, J.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

de Boer, J.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

de Juan, J.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

de Salvo, G.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Desjardins, A. E.

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).

Duker, J. S.

Farsiu, S.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).

Ferguson, R. D.

Fernandez, D. C.

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging 26(6), 761–771 (2007).
[Crossref] [PubMed]

Ferrone, C.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

Fiddy, M. A.

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics 14(1), 014,031 (2009).
[Crossref]

Flohr, T.

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging 27(12), 1685–1703 (2008).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fortunato, P.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics 29(4), 432–441 (2007).
[Crossref] [PubMed]

Fried, N. M.

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics 14(1), 014,031 (2009).
[Crossref]

Fujimoto, J. G.

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express 17(5), 4046–4060 (2009).
[Crossref] [PubMed]

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters 29(24), 2878–2880 (2004).
[Crossref]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gao, W.

Garvin, M. K.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

Giannini, D.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

Gorczynska, I.

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
[Crossref] [PubMed]

Götzinger, E.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grzywacz, N. M.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

Guedes, V.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Guo, W.

W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
[Crossref]

Haas, P.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Hagen, S.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Hammer, D.

Hassler, K.

Hee, M.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hertzmark, E.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Hitzenberger, C. K.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
[Crossref] [PubMed]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).

Ho, J.

Horn, F. K.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Hornegger, J.

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery 2(5), 255–264 (2008).
[Crossref]

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging 27(12), 1685–1703 (2008).
[Crossref] [PubMed]

Hougaard, J.

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
[Crossref] [PubMed]

Huang, D.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huang, F.

W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
[Crossref]

Huettmann, G.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Hughes, M.

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics 49(1), 99–107 (2010).
[Crossref] [PubMed]

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

Izatt, J. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

Jadwiga Rogowska, M. E. B.

M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology 47(4), 641–655 (2002).
[Crossref] [PubMed]

Jian, Z.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Joo, C.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Jrgensen, T. M.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
[Crossref] [PubMed]

Juenemann, A.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

Juenemann, A. G.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).

Karamata, B.

Kardon, R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

Kingsbury, N.

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE 22(6), 123 – 151 (2005).
[Crossref]

Knüttel, A.

Ko, T. H.

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters 29(24), 2878–2880 (2004).
[Crossref]

Koch, G.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

Koozekanani, D.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on  20(9), 900–916 (2001).
[Crossref]

Krebs, I.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Kruse, F. E.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

Laemmer, R.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Larsen, M.

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
[Crossref] [PubMed]

Lasser, T.

Laubscher, M.

Lederer, D.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Lee, P.

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
[Crossref] [PubMed]

Leitgeb, R. A.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

Li, X. T.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J.

Maduro, C.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

Mancini, R.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Mardin, C. Y.

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Marks, D. L.

Mattox, C.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Mishra, A.

Morel, J. M.

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

Moreno, G.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Mueller, H.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Mujat, M.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Nason, G.

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics 103, 281–299 (1995).
[Crossref]

Nicholas, P.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

Ozcan, A.

Pakter, H. M.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Paragios, N.

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention 11(1), 951–958 (2008).
[PubMed]

Park, B.

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Paunescu, L. A.

Pedut-Kloizman, T.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Pircher, M.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
[Crossref] [PubMed]

Podoleanu, A.

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics 49(1), 99–107 (2010).
[Crossref] [PubMed]

Puliafito, C.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Puvanathasan, P.

Ralston, T. S.

Ramrath, L.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Rao, B.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Raupach, R.

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery 2(5), 255–264 (2008).
[Crossref]

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging 27(12), 1685–1703 (2008).
[Crossref] [PubMed]

Reintjes, J.

Roberts, C.

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on  20(9), 900–916 (2001).
[Crossref]

Roessler, C. W.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

Russell, S. R.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

Russo, V.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

Salinas, H. M.

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging 26(6), 761–771 (2007).
[Crossref] [PubMed]

Sander, B.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
[Crossref] [PubMed]

Sattmann, H.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics 4(1), 95–105 (1999).
[Crossref]

J. M. Schmitt and A. Knüttel, “Model of optical coherence tomography of heterogeneous tissue,” J. Opt. Soc. Am. A 14(6), 1231–1242 (1997).
[Crossref]

Schmoll, T.

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

Schuman, J.

Schuman, J. S.

R. D. Ferguson, D. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett. 29(18), 2139–2141 (2004).
[Crossref] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Schweikard, A.

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

Selesnick, I.

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE 22(6), 123 – 151 (2005).
[Crossref]

Serranho, P.

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

Silverman, B.

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics 103, 281–299 (1995).
[Crossref]

Soliman, W.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).

Sonka, M.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

Spring, M.

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics 49(1), 99–107 (2010).
[Crossref] [PubMed]

Srinivasan, V. J.

Stinson, W.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tan, O.

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

Tearney, G. J.

Thomadsen, J.

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).

Thrane, L.

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
[Crossref] [PubMed]

Tornow, R. P.

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

Torre, A. L.

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics 29(4), 432–441 (2007).
[Crossref] [PubMed]

Toth, C. A.

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

Tromberg, B. J.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Vakoc, B. J.

Velazquez, L.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Voskanian, S.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Vuong, L. N.

Witkin, A. J.

Wollstein, G.

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Womastek, I.

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

Wong, A.

Wu, X.

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics 4(1), 95–105 (1999).
[Crossref]

Yu, L.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics 4(1), 95–105 (1999).
[Crossref]

Zhang, X.

Amer. J. Ophthalmology. (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Amer. J. Ophthalmology. 116(1), 113–114 (1993).

Applied Optics (1)

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Applied Optics 49(1), 99–107 (2010).
[Crossref] [PubMed]

British Journal of Ophthalmology (1)

B. Sander, M. Larsen, L. Thrane, J. Hougaard, and T. M. Jrgensen, “Enhanced optical coherence tomography imaging by multiple scan averaging,” British Journal of Ophthalmology 89(2), 207–212 (2005).
[Crossref] [PubMed]

IEEE Transactions on Medical Imaging (4)

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography,” IEEE Transactions on Medical Imaging 26(6), 761–771 (2007).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Transactions on Medical Imaging 27(10), 1495 – 1505 (2008).
[Crossref] [PubMed]

N. M. Grzywacz, J. de Juan, C. Ferrone, D. Giannini, D. Huang, G. Koch, V. Russo, O. Tan, and C. Bruni, “Statistics of optical coherence tomography data from human retina,” IEEE Transactions on Medical Imaging,  29(6), 1224 –1237 (2010).
[Crossref] [PubMed]

A. Borsdorf, R. Raupach, T. Flohr, and J. Hornegger, “Wavelet based noise reduction in CT-Images using correlation analysis,” IEEE Transactions on Medical Imaging 27(12), 1685–1703 (2008).
[Crossref] [PubMed]

International Journal of Computer Assisted Radiology and Surgery (1)

A. Borsdorf, R. Raupach, and J. Hornegger, “Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising,” International Journal of Computer Assisted Radiology and Surgery 2(5), 255–264 (2008).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with scanning laser polarimetry and spectral domain optical coherence tomograpy,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by path length encoded angular compounding,” J. Biomed. Opt. 8(2), 260–263 (2003).
[Crossref] [PubMed]

T. M. Jrgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration - method and clinical examples,” J. Biomed. Opt. 12(4), 041,208 (2007).

J. Glaucoma (1)

D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal nerve fiber layer thickness in normals measured by spectral domain OCT,” J. Glaucoma 19(7), 475–482 (2009).

J. Opt. Soc. Am. A (5)

Journal of Biomedical Optics (3)

S. Chitchian, M. A. Fiddy, and N. M. Fried, “Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.” Journal of Biomedical Optics 14(1), 014,031 (2009).
[Crossref]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” Journal of Biomedical Optics 4(1), 95–105 (1999).
[Crossref]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding.” Journal of Biomedical Optics 8(3), 565–569 (2003).
[Crossref] [PubMed]

Lecture Notes in Statistics (1)

G. Nason and B. Silverman, “The stationary wavelet transform and some statistical applications,” Lecture Notes in Statistics 103, 281–299 (1995).
[Crossref]

Medical Engineering & Physics (1)

M. Baroni, P. Fortunato, and A. L. Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Medical Engineering & Physics 29(4), 432–441 (2007).
[Crossref] [PubMed]

Medical Image Computing and Computer-Assisted Intervention (1)

N. Azzabou and N. Paragios, “Spatio-temporal speckle reduction in ultrasound sequences.” Medical Image Computing and Computer-Assisted Intervention 11(1), 951–958 (2008).
[PubMed]

Medical Imaging IEEE Transactions (1)

D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” Medical Imaging IEEE Transactions on  20(9), 900–916 (2001).
[Crossref]

Ophthalmology (2)

I. Krebs, S. Hagen, W. Brannath, P. Haas, I. Womastek, G. de Salvo, S. Ansari-Shahrezaei, and S. Binder, “Repeatability and reproducibility of retinal thickness measurements by optical coherence tomography in age-related macular degeneration,” Ophthalmology 117(8), 1577–1584 (2010).
[Crossref] [PubMed]

V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003).
[Crossref] [PubMed]

Opt. Express (7)

Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, and J. G. Fujimoto, “Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration,” Opt. Express 17(5), 4046–4060 (2009).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19,413–19,428 (2010).
[Crossref]

R. Bernardes, C. Maduro, P. Serranho, A. Araújo, S. Barbeiro, and J. Cunha-Vaz, “Improved adaptive complex diffusion despeckling filter,” Opt. Express 18(23), 24,048–24,059 (2010).
[Crossref]

P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express 17(2), 733–746 (2009).
[Crossref] [PubMed]

A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express 18(8), 8338–8352 (2010).
[Crossref] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express 14(11), 4736–4745 (2006).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14,568–14,585 (2011).
[Crossref]

Opt. Lett. (2)

Optics Express (2)

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional speckle suppression in optical coherence tomography based on the curvelet transform,” Optics Express 18(2), 1024–1032 (2010).
[Crossref] [PubMed]

M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Optics Express 13(23), 9480–9491 (2005).
[Crossref] [PubMed]

Optics Letters (1)

D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter,” Optics Letters 29(24), 2878–2880 (2004).
[Crossref]

Physics in Medicine and Biology (1)

M. E. B. Jadwiga Rogowska, “Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images.” Physics in Medicine and Biology 47(4), 641–655 (2002).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Signal Processing Magazine IEEE (1)

I. Selesnick, R. Baraniuk, and N. Kingsbury, “The dual-tree complex wavelet transform,” Signal Processing Magazine IEEE 22(6), 123 – 151 (2005).
[Crossref]

Other (3)

L. Ramrath, G. Moreno, H. Mueller, T. Bonin, G. Huettmann, and A. Schweikard, “Towards multi-directional OCT for speckle noise reduction,” in Proceedings of the 11th international conference on Medical Image Computing and Computer-Assisted Intervention - Part I, MICCAI ’08, pp. 815–823 (Springer-Verlag, Berlin, Heidelberg, 2008).
[PubMed]

A. Buades, B. Coll, and J. M. Morel, “On image denoising methods,” Technical Note CMLA (Centre de Mathematiques et de Leurs Applications) (2004).

W. Guo and F. Huang, “A Local Mutual Information Guided Denoising Technique and Its Application to Self-calibrated Partially Parallel Imaging,” in Medical Image Computing and Computer-Assisted Intervention MIC-CAI 2008, D. Metaxas, L. Axel, G. Fichtinger, and G. Szkely, eds., vol. 5242 of Lecture Notes in Computer Science, pp. 939–947 (Springer Berlin/ Heidelberg, 2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example images from the pig eye dataset. (a) Gold standard image, created by averaging 455 frames. An exemplary region is magnified, indicated by the white rectangle. To allow a better visual comparison, this region will also be magnified on all subsequent images shown in this work. (b) Average of 8 randomly selected frames. For display reasons, this image and the remaining images in this work are cropped. (c, d) Single frames from the averaged dataset in (b).

Fig. 2
Fig. 2

Flow diagram of the proposed multiframe denoising algorithm. The single images Fi are scaled with a logarithmic transformation and wavelet decomposed. Weights are estimated from the wavelet coefficients and applied to the detail coefficients. Averaging in the wavelet domain and a wavelet reconstruction yields the final image R.

Fig. 3
Fig. 3

Gold standard image with the regions of interest marked for the two evaluation metrics. Red rectangle regions are used in the SNRgain measurement. Blue rectangle regions are used in the FWHMred measurements.

Fig. 4
Fig. 4

Sharpness reduction as measured by the full-width-half-maximum reduction (FWHMred ) plotted against noise reduction as measured by the signal-to-noise gain (SNRgain) for 8 frames and 5 wavelet levels using the wavelet multiframe noise reduction method. Results are shown for: Significance weight (parameter k varied) and discrete stationary wavelet transform with Haar wavelets (DSWT); significance weight (parameter k varied) and dual tree complex wavelet transformation (DTCWT); correlation weight (parameter p varied) and DSWT; correlation weight (parameter p varied) and DTCWT; combination of significance and correlation weight (parameter k and p* varied) and DSWT; combination of significance and correlation weight (parameter k and p* varied) and DTCWT.

Fig. 5
Fig. 5

Sharpness reduction as measured by the full-width-half-maximum reduction (FWHMred ) plotted against noise reduction as measured by the signal-to-noise gain (SNRgain) for 4 frames and 5 wavelet levels using the wavelet multiframe noise reduction method. Results are shown for: Significance weight (parameter k varied) and discrete stationary wavelet transform with Haar wavelets (DSWT); significance weight (parameter k varied) and dual tree complex wavelet transformation (DTCWT); correlation weight (parameter p varied) and DSWT; correlation weight (parameter p varied) and DTCWT; combination of significance and correlation weight (parameter k and p* varied) and DSWT; combination of significance and correlation weight (parameter k and p* varied) and DTCWT.

Fig. 6
Fig. 6

Sharpness reduction as measured by the full-width-half-maximum reduction (FWHMred ) plotted against noise reduction as measured by the signal-to-noise gain (SNRgain) for 8 frames and 5 wavelet levels. Results are shown for: Wavelet soft thresholding with Haar wavelets and the discrete stationary wavelet transform (DSWT) (threshold varied); wavelet hard thresholding with dual tree complex wavelet transformation (DTCWT) (threshold varied); wavelet multiframe denoising with significance weight (parameter k varied); wavelet multiframe denoising with a combination of significance and correlation weight (parameter k and p* varied); median filtering (window size of 3 ×3 and 5 ×5 pixels). Additionaly, the results averaging of up to 40 frames are shown were an average of 8 frames holds as a reference. The results of averaging 16, 24, and 32 frames are marked with dots.

Fig. 7
Fig. 7

Result examples from the pig eye dataset, generated from the same 8 randomly selected frames: (a) Average. (b - e) Denoising results. Parameters for the methods were adjusted so that the SNRgain was roughly 100%. (b) Median filtering with a window size of 5 × 5 on the average of 8 frames. (c) Wavelet hard thresholding with dual tree wavelet on the average of the 8 frames. (d) Wavelet multiframe denoising using the significance weight with Haar wavelets. (e) Wavelets multiframe denoising using the combined significance and correlation weight with Haar wavelets.

Fig. 8
Fig. 8

Result examples from the human eye fundus dataset: (a) Average of 4 frames. (b - d) Denoising results. Parameters for the methods were adjusted such that the SNRgain was roughly 100%. (b) Median filtering on the average of 4 frames. (c) Wavelet hard thresholding with dual tree wavelet on the average of 4 frames. (d) Wavelets multiframe denoising using the combined significance and correlation weight with Haar wavelets.

Tables (1)

Tables Icon

Table 1 Quantitative evaluation results of the different denoising methods. The parameters were adjusted so that the signal-to-noise-ratio gain (SNRgain) was about 100%, with the exception of the wavelet soft thresholding using the Haar wavelet, where a SNRgain of 100 can not be achieved due to artifact generation.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

F i = S + N i
σ i ( x ) σ j ( x )
W ˜ i , D l ( x ) = G i , D l ( x ) W i , D l ( x )
W D l ( x ) = 1 N i = 1 N W ˜ i , D l ( x )
A l max ( x ) = 1 N i = 1 N A i l max ( x )
G D l ( x ) = { W D l ( x ) sgn ( W D l ( x ) ) τ W D l ( x ) , | W D l ( x ) | > τ 0 , otherwise
σ S , i , D l 2 ( x ) = 1 N 1 j = 1 j i N ( W i , D l ( x ) W j , D l ( x ) ) 2
G sig , i , D l ( x ) = { 1 , | W i , D l ( x ) | k σ S , i , D l ( x ) θ i ( W 1 , D l ( x ) , , W m , D l ( x ) ) , otherwise
θ i ( w 1 , , w m ) = 1 m 1 j = 0 j i m 1 | 1 w i w j |
G corr , i l ( x ) = med i j ( 1 2 Corr ( V i l ( x ) , V j l ( x ) ) + 1 ) p
G comb , i l ( x ) = G corr , i l ( x ) with p = p ^ ( 1 G sig , i , D l ( x ) ) 2 + 1
SNR 1 = σ ( S ) σ ( N ) , o r SNR 2 = μ ( S ) σ ( N )
SNR gain = SNR 1 ( F f ) SNR 1 ( F a ) 1 = SNR 2 ( F f ) SNR 2 ( F a ) 1 = σ ( N a ) σ ( N f ) 1
N a F a F g , N f F f F g
Γ ( x ) = q 1 + q 2 1 + exp ( x + q 3 q 4 )
Γ ( x ) = q 2 q 4 exp ( x + q 3 q 4 ) ( 1 + exp ( x + q 3 q 4 ) ) 2
FWHM = | q 4 ln ( 2 d + 1 1 4 d 2 d + 1 + 1 4 d ) | , with d = Γ ( q 3 ) q 4 q 2
FWHM red = FWHM ( F f ) FWHM ( F a ) 1

Metrics