Abstract

We formulate a theory to show that the statistics of OCT signal amplitude and intensity are highly dependent on the sample reflectivity strength, motion, and noise power. Our theoretical and experimental results depict the lack of speckle amplitude and intensity contrasts to differentiate regions of motion from static areas. Two logarithmic intensity-based contrasts, logarithmic intensity variance (LOGIV) and differential logarithmic intensity variance (DLOGIV), are proposed for serving as surrogate markers for motion with enhanced sensitivity. Our findings demonstrate a good agreement between the theoretical and experimental results for logarithmic intensity-based contrasts. Logarithmic intensity-based motion and speckle-based contrast methods are validated and compared for in vivo human retinal vasculature visualization using high-speed swept-source optical coherence tomography (SS-OCT) at 1060 nm. The vasculature was identified as regions of motion by creating LOGIV and DLOGIV tomograms: multiple B-scans were collected of individual slices through the retina and the variance of logarithmic intensities and differences of logarithmic intensities were calculated. Both methods captured the small vessels and the meshwork of capillaries associated with the inner retina in en face images over 4 mm2 in a normal subject.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
    [CrossRef] [PubMed]
  2. E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol.124(5), 677–682 (1997).
    [PubMed]
  3. J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
    [CrossRef] [PubMed]
  4. S. S. Hayreh, Anterior Ischemic Optic Neuropathy, (Springer-Verlag, 1975).
  5. J. D. Gass, Stereoscopic Atlas of Macular Diseases, 4th ed. (Mosby, 1997).
  6. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
    [PubMed]
  7. M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
    [PubMed]
  8. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer, 2008).
  9. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
    [CrossRef] [PubMed]
  10. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  11. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  12. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2009).
    [CrossRef] [PubMed]
  13. G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
    [CrossRef] [PubMed]
  14. G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011).
    [CrossRef] [PubMed]
  15. S. Makita, J. Franck, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
    [CrossRef] [PubMed]
  16. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  17. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
    [CrossRef] [PubMed]
  18. M. C. Pierce, B. Hyle Park, B. Cense, and J. F. de Boer, “Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography,” Opt. Lett.27(17), 1534–1536 (2002).
    [CrossRef] [PubMed]
  19. B. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  20. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  21. R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
    [CrossRef] [PubMed]
  22. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. K. Leung, J. Jiang, A. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  23. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
    [CrossRef] [PubMed]
  24. J. W. Goodman, Statistical Optics, (Wiley, 1985).
  25. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
    [CrossRef]
  26. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
    [CrossRef] [PubMed]
  27. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A22(4), 593–596 (2005).
    [CrossRef] [PubMed]
  28. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, (McGraw-Hill, 2002).
  29. J. D. Briers, “Laser speckle contrast imaging for measuring blood flow,” in Proceeding of the Symposium on Photonics Technologies for 7th Framework Program (2006), pp. 328–332.
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Dover, 1964).
  31. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express14(10), 4403–4411 (2006).
    [CrossRef] [PubMed]
  32. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express13(26), 10652–10664 (2005).
    [CrossRef] [PubMed]
  33. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
    [CrossRef] [PubMed]
  34. R. W. Gosper, “harmonic Summation and exponential gfs,” http://mathworld.wolfram.com/HarmonicNumber.html .

2011

2010

2009

2008

2006

2005

2004

2003

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

2002

M. C. Pierce, B. Hyle Park, B. Cense, and J. F. de Boer, “Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography,” Opt. Lett.27(17), 1534–1536 (2002).
[CrossRef] [PubMed]

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

1999

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

1997

E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol.124(5), 677–682 (1997).
[PubMed]

1994

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

1992

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
[CrossRef] [PubMed]

1986

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

Akiba, M.

An, L.

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

B. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

Cable, A.

Cense, B.

Chan, K.-P.

Chen, T.

Chen, Z.

Choi, B.

Chong, C.

Chou, L.

Costa, V. P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

de Boer, J.

de Boer, J. F.

Duker, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

Fercher, A. F.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Fingler, J.

Flammer, J.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Francis, P.

Franck, J.

Fraser, S. E.

Friedman, E.

E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol.124(5), 677–682 (1997).
[PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Gragoudas, E. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Guyer, D. R.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Hassler, K.

Hitzenberger, C. K.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Hong, Y.

Hope-Ross, M.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Hyle Park, B.

Itoh, M.

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Jarvi, M.

Jia, W.

Jiang, J.

Karamata, B.

Khurana, M.

Ko, T.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

Kohner, E.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
[CrossRef] [PubMed]

Kolbitsch, C.

Kowalczyk, A.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

Krieglstein, G. K.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Krupsky, S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Lasser, T.

Laubscher, M.

Lee, E. C.

Lee, K.

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Leitgeb, R. A.

Leung, M. K. K.

Lim, H.

Liu, G.

Madjarova, V. D.

Makita, S.

Mariampillai, A.

Miura, M.

Moriyama, E. H.

Morosawa, A.

Mujat, M.

Munce, N. R.

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Nassif, N.

Newsom, R.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
[CrossRef] [PubMed]

Orgül, S.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Orlock, D. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Orzalesi, N.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Park, B.

Patel, V.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
[CrossRef] [PubMed]

Pierce, M.

Pierce, M. C.

Pircher, M.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Puliafito, C. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Qi, W.

Rassam, S.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
[CrossRef] [PubMed]

Renard, J.-P.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

Sakai, T.

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Schmoll, T.

Schuman, J. S.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

Schwartz, D.

Serra, L. M.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

Slakter, J. S.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

Sorenson, J. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

Standish, B. A.

Stefánsson, E.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tearney, G.

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

B. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Vakoc, B.

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Vitkin, A.

Vitkin, I. A.

Wang, R. K.

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

Werner, J. S.

Wiek, J.

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Wilson, D. J.

Wojtkowski, M.

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Yamanari, M.

Yang, V. X. D.

Yannuzzi, L. A.

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

Yasuno, Y.

Yatagai, T.

Yu, L.

Yun, S. H.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

Zawadzki, R. J.

Am. J. Ophthalmol.

E. Friedman, “A hemodynamic model of the pathogenesis of age-related macular degeneration,” Am. J. Ophthalmol.124(5), 677–682 (1997).
[PubMed]

BMJ

V. Patel, S. Rassam, R. Newsom, J. Wiek, and E. Kohner, “Retinal blood flow in diabetic retinopathy,” BMJ305(6855), 678–683 (1992).
[CrossRef] [PubMed]

J. Biomed. Opt.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95 (1999).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nat. Med.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Ophthalmology

M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, “Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography,” Ophthalmology112(10), 1734–1746 (2005).
[CrossRef] [PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology93(5), 611–617 (1986).
[PubMed]

M. Hope-Ross, L. A. Yannuzzi, E. S. Gragoudas, D. R. Guyer, J. S. Slakter, J. A. Sorenson, S. Krupsky, D. A. Orlock, and C. A. Puliafito, “Adverse reactions due to indocyanine green,” Ophthalmology101(3), 529–533 (1994).
[PubMed]

Opt. Express

B. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express13(26), 10652–10664 (2005).
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, “In vivo optical frequency domain imaging of human retina and choroid,” Opt. Express14(10), 4403–4411 (2006).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

S. Makita, J. Franck, M. Yamanari, M. Miura, and Y. Yasuno, “Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography,” Opt. Express19(2), 1271–1283 (2011).
[CrossRef] [PubMed]

G. Liu, W. Qi, L. Yu, and Z. Chen, “Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging,” Opt. Express19(4), 3657–3666 (2011).
[CrossRef] [PubMed]

G. Liu, L. Chou, W. Jia, W. Qi, B. Choi, and Z. Chen, “Intensity-based modified Doppler variance algorithm: application to phase instable and phase stable optical coherence tomography systems,” Opt. Express19(12), 11429–11440 (2011).
[CrossRef] [PubMed]

B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express12(11), 2435–2447 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Prog. Retin. Eye Res.

J. Flammer, S. Orgül, V. P. Costa, N. Orzalesi, G. K. Krieglstein, L. M. Serra, J.-P. Renard, and E. Stefánsson, “The impact of ocular blood flow in glaucoma,” Prog. Retin. Eye Res.21(4), 359–393 (2002).
[CrossRef] [PubMed]

Other

S. S. Hayreh, Anterior Ischemic Optic Neuropathy, (Springer-Verlag, 1975).

J. D. Gass, Stereoscopic Atlas of Macular Diseases, 4th ed. (Mosby, 1997).

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Biological and Medical Physics, Biomedical Engineering (Springer, 2008).

J. W. Goodman, Statistical Optics, (Wiley, 1985).

A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, (McGraw-Hill, 2002).

J. D. Briers, “Laser speckle contrast imaging for measuring blood flow,” in Proceeding of the Symposium on Photonics Technologies for 7th Framework Program (2006), pp. 328–332.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, (Dover, 1964).

R. W. Gosper, “harmonic Summation and exponential gfs,” http://mathworld.wolfram.com/HarmonicNumber.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The theoretical (blue dotted curves) and simulated (red solid curves) (a) mean of logarithm of normalized intensity to the non-centrality parameter and (b) variance of logarithm of intensity as a function of SNR. (c) The theoretical SACR, SICR, LOGIV, and DLOGIV as function of SNR. The close-up view shows the normalized SACR, SICR, LOGIV, and DLOGIV as function of SNR in Fig. 1(c).

Fig. 2
Fig. 2

Schematic of a polygon-based swept-laser source (gray box), interferometer (yellow box), and SS-OCT data acquisition unit used for imaging. SOA, semiconductor optical amplifier; diffraction grating (830 lines/mm); telescope (f1 = 40 mm, f2 = 35 mm); polygonal scanning mirrors (72 facets); COL, collimator; PC, polarization controller; ISO, isolator; CIRC, circulator; CUP, coupler; PD, photodetector; BD, dual balanced photodetector (InGaAs, 80 MHz); FBG, fiber Bragg grating (0.1 nm). Data acquisition unit comprising of an AD conversion board (14-bit, GaGe CompuScope 14,200) for digitizing interference fringes and a D/A board (16 bit, National Instruments) for driving scanning mirrors (Cambridge Technology).

Fig. 3
Fig. 3

Flowchart representing the data processing procedures for generating different motion contrasts of OCT: (a) DPV, (b) SICR, (c) SIV, (d) SACR, (e) SAV, (f) LOGIV, and (g) DLOGIV.

Fig. 4
Fig. 4

(a) Averaged intensity tomogram across the fovea centralis (5 mm). Red line depicts the targeted transverse location and depths by a stationary optical beam. (b) The retinal and choroidal structure was captured in 1900 repeated A-scans through depth (red line in Fig. 4(a)). (c) The estimated mean (dash-dotted blue line) and standard deviation (solid red line) of the linear intensity through the retinal and choroidal layers. Histograms and theoretically derived PDFs (black dashed lines) of the captured linear intensity at the level of (d) RNFL, (e) IS, (f) RPE, (g) CC, (h) SL, and (i) HL. Histograms and theoretically derived PDFs (black dashed lines) of the captured amplitude at the level of (j) RNFL, (k) IS, (l) RPE, (m) CC, (n) SL, and (o) HL.

Fig. 5
Fig. 5

Quantitative variations of (a) SICR, (b) SACR, (c) LOGIV, and (d) DLOGIV through the retina and choroid.

Fig. 6
Fig. 6

Foveal (a) average intensity, (b) SICR, (c) SACR, (d) SAV, (e) LOGIV, (f) DLOGIV, (g) DPV before phase compensation, and (h) DPV after phase compensation tomograms (2 mm). White regions correspond to regions with higher either motion or/and reflectivity. White arrows indicate the small vessel in Figs. 6(b)6(h). IS/OS and RPE are signified between red lines (static regions). Regions of motion in the inner choroid are indicated between blue lines.

Fig. 7
Fig. 7

Parafoveal depth-integrated en face views over 4 mm2 FOV acquired in 4 seconds. Inverted (a) averaged intensity, (b) SICR, (c) SIV, (d) SACR, (e) SAV, (f) LOGIV, (g) DLOGIV, and (h) DPV en face images of the inner retina.

Fig. 8
Fig. 8

Parafoveal depth-integrated en face views over 4 mm2 FOV acquired in 4 seconds. Inverted (a) LOGIV, (b) DLOGIV, and (c) DPV en face images of the retina between the regions 255 μm and 216 μm anterior to IS/OS. Inverted (d) LOGIV, (e) DLOGIV, and (f) DPV en face images of the retina between the regions 216 μm and 169 μm anterior to IS/OS.

Equations (58)

Equations on this page are rendered with MathJax. Learn more.

U(z,t)= U Real (z,t)+j U Imag (z,t)=A(z,t) e jφ(z,t) +N(z,t)
U Real (z,t)= A r (t) i=1 N A s ( x i , y i ,z,t)cos(φ( x i , y i ,z,t)) + N Real (z,t)= V 1 (z,t)+ N Real (z,t)
U Imag (z,t)= A r (t) i=1 N A s ( x i , y i ,z,t)sin(φ( x i , y i ,z,t)) + N Imag (z,t)= V 2 (z,t)+ N Imag (z,t)
U(z,t)=( μ v1 (z)+j μ v2 (z))+D(z,t)
I(z,t)= | U(z,t) | 2 = U Real 2 (z,t)+ U Imag 2 (z,t)
p I (i)= 1 2( σ nr 2 + σ v1 2 ) e ( s I 2 +i) 2( σ nr 2 + σ v1 2 ) I 0 ( s I i σ nr 2 + σ v1 2 )= 1 σ 2 e ( s I 2 +i) σ 2 I 0 (2 s I i σ 2 )
p M (m)= m ( σ nr 2 + σ v1 2 ) e ( s I 2 + m 2 ) 2( σ nr 2 + σ v1 2 ) I 0 ( s I m σ nr 2 + σ v1 2 )= 2m σ 2 e ( s I 2 + m 2 ) σ 2 I 0 (2 s I m σ 2 )
s I 2 = μ v1 2 + μ v2 2
σ 2 = σ nr 2 + σ ni 2 + σ v1 2 + σ v2 2 =2( σ nr 2 + σ v1 2 )= σ n 2 + σ v 2
I 0 (c)= k=0 1 k!Γ(k+1) ( c 2 ) 2k
μ I =2( σ nr 2 + σ v1 2 )+ s I 2 = σ 2 + s I 2 = σ 2 (1+SNR)
SIV= σ I 2 =4 ( σ nr 2 + σ v1 2 ) 2 +4( σ nr 2 + σ v1 2 ) s I 2 = σ 4 +2 σ 2 s I 2 = σ 4 (1+2SNR)
μ M = π 2 ( σ nr 2 + σ v1 2 ) L 0.5 ( s I 2 2( σ nr 2 + σ v1 2 ) )= σ π 2 L 0.5 ( s I 2 σ 2 )= σ π 2 L 0.5 (SNR)
SAV= σ M 2 =2( σ nr 2 + σ v1 2 )+ s I 2 π 2 ( σ nr 2 + σ v1 2 ) [ L 0.5 ( s I 2 2( σ nr 2 + σ v1 2 ) )] 2 = σ 2 {1+SNR π 4 [ L 0.5 (SNR)] 2 }
SICR= σ I μ I = 1+2SNR 1+SNR
SACR= σ M μ M = 4(1+SNR) π [ L 0.5 (SNR)] 2 1
m log(I) ={ log( s I 2 )+Γ(0, s I 2 σ 2 )=log( s I 2 )+ s I 2 σ n 2 + e t t dt log( σ 2 )γ
s I >0 s I =0
LOGIV= σ log(I) 2 = n=1 Q(2n,SNR) n 2
Q(a,b)= Γ(a,b) Γ(a)
DLOGIV=2 σ log(I) 2 =2 n=1 Q(2n,SNR) n 2
log(I)=log( σ 2 W)=log( σ 2 )+log(W)
p W (w)= e ( s W 2 +w) I 0 (2 s W w )
m log(I) =log( σ 2 )+ 0 + log(w) e ( s W 2 +w) I 0 (2 s W w )dw
Γ (n) (k)= d n d k n Γ(k)= 0 + w k1 e w [log(w)] n dw
m log(I) =log( σ 2 )+ e s w 2 k=0 ( s W 2 ) k k!Γ(k+1) Γ (1) (k+1)
Γ (1) (k+1) Γ(k+1) = ψ 0 (k+1)=γ+ H k (1) =γ+ j=1 k 1 j
m log(I) =log( σ 2 )γ+ e s w 2 k=0 ( s W 2 ) k H k k!
e f k=0 (f) k H k k! =γ+Γ(0,f)+log(f)
m log(I) =log( σ 2 )+log( s W 2 )+Γ(0, s W 2 )
m log(I) ={ log( s I 2 )+Γ(0, s I 2 σ 2 )=log( s I 2 )+ s I 2 σ n 2 + e t t dt log( σ 2 )γ
s I >0 s I =0
σ log(I) 2 =E{ [log(w)] 2 } [log( s W 2 )+Γ(0, s W 2 )] 2
E{ log 2 (w)}= e s w 2 k=0 ( s W 2 ) k k!Γ(k+1) Γ (2) (k+1)
Γ (2) (k+1) Γ(k+1) = ψ 0 2 (k+1)+ d ψ 0 (k) dk = ψ 0 2 (k+1)+ ψ 1 (k+1)
ψ 1 (k+1)=ξ(2) H k (2) = π 2 6 H k (2) = π 2 6 j=1 k 1 j 2
E{ log 2 (w)}= π 2 6 + γ 2 (2γ) e s W 2 k=0 ( s W 2 ) k H k k! + e s W 2 k=0 ( s W 2 ) k [ ( H k ) 2 H k (2) ] k!
E{ log 2 (w)}= π 2 6 + γ 2 2γ(γ+log( s W 2 )+Γ(0, s W 2 ))+F( s W 2 )
F( s W 2 )= e s w 2 k=0 ( s W 2 ) k [ ( H k ) 2 H k (2) ] k!
F(g) g = e g k=0 g k [ ( H k+1 ) 2 ( H k ) 2 H k+1 (2) + H k (2) ] k!
H k+1 1 k+1 = H k
H k+1 (2) H k (2) = 1 (k+1) 2
F(g) g = 2 e g g k=1 (g) k ( H k k! 1 kk! )
E in (g)= 0 g (1 e t ) t dt= e g k=1 (g) k ( H k k! ) =γ+Γ(0,g)+log(g)= k=1 (1) k+1 ( g k kk! )
E in (g)= k=1 g k kk!
F(g) g = 2(1 e g ) g E in (g)+ 2 e g g ( E in (g)+ E in (g))=2 E in (g) g E in (g)+ 2 e g g ( E in (g)+ E in (g))
F( s W 2 )= (γ+log( s W 2 )+Γ(0, s W 2 )) 2 +2 0 s W 2 e g g ( E in (g)+ E in (g))dg
σ log(I) 2 = π 2 6 +2 0 s W 2 e g g ( E in (g)+ E in (g))dg
σ log(I) 2 = π 2 6 2 k=1 (1+ (1) k )γ(k, s W 2 ) kk!
γ(a,z)= 0 z t a1 e t dt
Γ(a,z)= z t a1 e t dt
Γ(a)=(a1)!=γ(a,z)+Γ(a,z)
σ log(I) 2 = π 2 6 2 k=1 (1+ (1) k )(Γ(k)Γ(k, s W 2 )) kk! = π 2 6 2 k=1 (1+ (1) k ) k 2 +4 n=1 Γ(2n, s W 2 ) (2n)(2n)!
k=1 (1+ (1) k ) k 2 = ξ(2) 2 = π 2 12
σ log(I) 2 =4 n=1 Γ(2n, s I 2 σ 2 ) (2n)(2n)! = 4 n=1 Γ(2n,SNR) (2n)(2n)!
LOGIV= σ log(I) 2 = n=1 Q(2n,SNR) n 2
Q(a,b)= Γ(a,b) Γ(a)
DLOGIV=2 σ log(I) 2 =2 n=1 Q(2n,SNR) n 2

Metrics