Abstract

A new technique is presented for the non-invasive imaging of the dynamic response of the cornea to an air puff inducing a deformation. A spectral OCT instrument combined with an air tonometer in a non-collinear configuration was used to image the corneal deformation over full corneal cross-sections, as well as to obtain high speed measurements of the temporal evolution of the corneal apex. The entire deformation process can be dynamically visualized. A quantitative analysis allows direct extraction of several deformation parameters, such as amplitude, diameter and volume of the maximum deformation, as well as duration and speed of the increasing deformation period and the recovery period. The potential of the technique is demonstrated on porcine corneas in vitro under constant IOP for several conditions (untreated, after riboflavin instillation and under cross-linking with ultraviolet light), as well as on human corneas in vivo. The new technique has proved very sensitive to detect differences in the deformation parameters across conditions. We have confirmed non-invasively that Riboflavin and UV-cross-linking induce changes in the corneal biomechanical properties. Those differences appear to be the result of changes in constituent properties of the cornea, and not a consequence of changes in corneal thickness, geometry or IOP. These measurements are a first step for the estimation of the biomechanical properties of corneal tissue, at an individual level and in vivo, to improve diagnosis and prognosis of diseases and treatments involving changes in the biomechanical properties of the cornea.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res.31(4), 435–441 (1980).
    [CrossRef] [PubMed]
  2. W. J. Dupps and S. E. Wilson, “Biomechanics and wound healing in the cornea,” Exp. Eye Res.83(4), 709–720 (2006).
    [CrossRef] [PubMed]
  3. Y. S. Rabinowitz, “Keratoconus,” Surv. Ophthalmol.42(4), 297–319 (1998).
    [CrossRef] [PubMed]
  4. E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res.66(1), 97–103 (1998).
    [CrossRef] [PubMed]
  5. G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol.135(5), 620–627 (2003).
    [CrossRef] [PubMed]
  6. G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
    [CrossRef] [PubMed]
  7. J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000).
    [CrossRef] [PubMed]
  8. J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
    [CrossRef] [PubMed]
  9. D. M. Choi, R. W. Thompson, and F. W. Price., “Incisional refractive surgery,” Curr. Opin. Ophthalmol.13(4), 237–241 (2002).
    [CrossRef] [PubMed]
  10. C. Roberts, “The cornea is not a piece of plastic,” J. Refract. Surg.16(4), 407–413 (2000).
    [PubMed]
  11. P. S. Binder, “Ectasia after laser in situ keratomileusis,” J. Cataract Refract. Surg.29(12), 2419–2429 (2003).
    [CrossRef] [PubMed]
  12. C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006).
    [PubMed]
  13. M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009).
    [CrossRef] [PubMed]
  14. B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” J. Biomech.19(10), 847–853 (1986).
    [CrossRef] [PubMed]
  15. D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992).
    [CrossRef] [PubMed]
  16. A. Elsheikh and K. Anderson, “Comparative study of corneal strip and extensiometry and inflation tests,” J. R. Soc. Interface46(2), 409–414 (2005).
  17. A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res.86(5), 783–790 (2008).
    [CrossRef] [PubMed]
  18. K. Anderson, A. El-Sheikh, and T. Newson, “Application of structural analysis to the mechanical behaviour of the cornea,” J. R. Soc. Interface1(1), 3–15 (2004).
    [CrossRef] [PubMed]
  19. H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998).
    [PubMed]
  20. W. Śródka and D. R. Iskander, “Optically inspired biomechanical model of the human eyeball,” J. Biomed. Opt.13(4), 044034 (2008).
    [CrossRef] [PubMed]
  21. S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
    [CrossRef] [PubMed]
  22. A. Elsheikh and D. Alhasso, “Mechanical anisotropy of porcine cornea and correlation with stromal microstructure,” Exp. Eye Res.88(6), 1084–1091 (2009).
    [CrossRef] [PubMed]
  23. S. Kling, J. J. del Coz, P. Pérez-Merino, J. L. Suarez, and S. Marcos, “Impact of hydration state and storage media on corneal biomechanical properties from in vitro inflation tests and finite element modeling,” submitted to Invest. Ophthalmol. Vis. Sci.
  24. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg.31(1), 156–162 (2005).
    [CrossRef] [PubMed]
  25. B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011).
    [PubMed]
  26. Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
    [CrossRef] [PubMed]
  27. G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
    [CrossRef] [PubMed]
  28. M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
    [CrossRef] [PubMed]
  29. X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Invest. Ophthalmol. Vis. Sci.50(11), 5148–5154 (2009).
    [CrossRef] [PubMed]
  30. R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
    [CrossRef] [PubMed]
  31. C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.
  32. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
    [CrossRef] [PubMed]
  33. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
    [CrossRef] [PubMed]
  34. A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
    [CrossRef] [PubMed]
  35. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
    [CrossRef] [PubMed]
  36. R. F. Steinert and D Huang, eds., Anterior Segment Optical Coherence Tomography (SLACK Incorporated, Thorofare, N.J., 2008).
  37. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]
  38. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  39. D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system,” Opt. Express19(15), 14188–14199 (2011).
    [CrossRef] [PubMed]
  40. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  41. J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
    [CrossRef] [PubMed]
  42. I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
    [CrossRef] [PubMed]
  43. M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
    [CrossRef] [PubMed]

2011 (6)

B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011).
[PubMed]

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
[CrossRef] [PubMed]

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

D. Alonso-Caneiro, K. Karnowski, B. J. Kaluzny, A. Kowalczyk, and M. Wojtkowski, “Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system,” Opt. Express19(15), 14188–14199 (2011).
[CrossRef] [PubMed]

2010 (2)

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

2009 (9)

A. Elsheikh and D. Alhasso, “Mechanical anisotropy of porcine cornea and correlation with stromal microstructure,” Exp. Eye Res.88(6), 1084–1091 (2009).
[CrossRef] [PubMed]

X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Invest. Ophthalmol. Vis. Sci.50(11), 5148–5154 (2009).
[CrossRef] [PubMed]

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res.86(5), 783–790 (2008).
[CrossRef] [PubMed]

W. Śródka and D. R. Iskander, “Optically inspired biomechanical model of the human eyeball,” J. Biomed. Opt.13(4), 044034 (2008).
[CrossRef] [PubMed]

2006 (2)

C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006).
[PubMed]

W. J. Dupps and S. E. Wilson, “Biomechanics and wound healing in the cornea,” Exp. Eye Res.83(4), 709–720 (2006).
[CrossRef] [PubMed]

2005 (4)

A. Elsheikh and K. Anderson, “Comparative study of corneal strip and extensiometry and inflation tests,” J. R. Soc. Interface46(2), 409–414 (2005).

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg.31(1), 156–162 (2005).
[CrossRef] [PubMed]

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Anderson, A. El-Sheikh, and T. Newson, “Application of structural analysis to the mechanical behaviour of the cornea,” J. R. Soc. Interface1(1), 3–15 (2004).
[CrossRef] [PubMed]

2003 (3)

P. S. Binder, “Ectasia after laser in situ keratomileusis,” J. Cataract Refract. Surg.29(12), 2419–2429 (2003).
[CrossRef] [PubMed]

G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol.135(5), 620–627 (2003).
[CrossRef] [PubMed]

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

2002 (2)

D. M. Choi, R. W. Thompson, and F. W. Price., “Incisional refractive surgery,” Curr. Opin. Ophthalmol.13(4), 237–241 (2002).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

2000 (3)

C. Roberts, “The cornea is not a piece of plastic,” J. Refract. Surg.16(4), 407–413 (2000).
[PubMed]

J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000).
[CrossRef] [PubMed]

J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
[CrossRef] [PubMed]

1998 (3)

Y. S. Rabinowitz, “Keratoconus,” Surv. Ophthalmol.42(4), 297–319 (1998).
[CrossRef] [PubMed]

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res.66(1), 97–103 (1998).
[CrossRef] [PubMed]

H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998).
[PubMed]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

1992 (1)

D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992).
[CrossRef] [PubMed]

1986 (1)

B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” J. Biomech.19(10), 847–853 (1986).
[CrossRef] [PubMed]

1980 (1)

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res.31(4), 435–441 (1980).
[CrossRef] [PubMed]

Alhasso, D.

A. Elsheikh and D. Alhasso, “Mechanical anisotropy of porcine cornea and correlation with stromal microstructure,” Exp. Eye Res.88(6), 1084–1091 (2009).
[CrossRef] [PubMed]

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res.86(5), 783–790 (2008).
[CrossRef] [PubMed]

Alonso-Caneiro, D.

Altman, P.

D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992).
[CrossRef] [PubMed]

Alves, M. R.

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Ambrósio, R.

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011).
[PubMed]

Anderson, K.

A. Elsheikh and K. Anderson, “Comparative study of corneal strip and extensiometry and inflation tests,” J. R. Soc. Interface46(2), 409–414 (2005).

K. Anderson, A. El-Sheikh, and T. Newson, “Application of structural analysis to the mechanical behaviour of the cornea,” J. R. Soc. Interface1(1), 3–15 (2004).
[CrossRef] [PubMed]

Andreassen, T. T.

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res.31(4), 435–441 (1980).
[CrossRef] [PubMed]

Artal, P.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

Auffarth, G. U.

M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009).
[CrossRef] [PubMed]

Avni, I.

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

Barkana, Y.

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

Barr, J. T.

J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
[CrossRef] [PubMed]

Belin, M. W.

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Berendschot, T. T. J. M.

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

Bille, J. F.

H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998).
[PubMed]

Binder, P. S.

P. S. Binder, “Ectasia after laser in situ keratomileusis,” J. Cataract Refract. Surg.29(12), 2419–2429 (2003).
[CrossRef] [PubMed]

Bueno, J. M.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

Bullimore, M. A.

J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
[CrossRef] [PubMed]

Buzard, K.

D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992).
[CrossRef] [PubMed]

Caldas, D.

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

Caldas, D. L.

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Cazal, J. O.

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Choe, K.

D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992).
[CrossRef] [PubMed]

Choi, D. M.

D. M. Choi, R. W. Thompson, and F. W. Price., “Incisional refractive surgery,” Curr. Opin. Ophthalmol.13(4), 237–241 (2002).
[CrossRef] [PubMed]

Cochener, B.

J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000).
[CrossRef] [PubMed]

Colin, J.

J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000).
[CrossRef] [PubMed]

Deenadayalu, C.

C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006).
[PubMed]

Doors, M.

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

Dorronsoro, C.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Dubbelman, M.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Dupps, W. J.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
[CrossRef] [PubMed]

W. J. Dupps and S. E. Wilson, “Biomechanics and wound healing in the cornea,” Exp. Eye Res.83(4), 709–720 (2006).
[CrossRef] [PubMed]

Eggink, F. A.

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

Ehmer, A.

M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009).
[CrossRef] [PubMed]

Eilmsteiner, R.

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

Elsheikh, A.

A. Elsheikh and D. Alhasso, “Mechanical anisotropy of porcine cornea and correlation with stromal microstructure,” Exp. Eye Res.88(6), 1084–1091 (2009).
[CrossRef] [PubMed]

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res.86(5), 783–790 (2008).
[CrossRef] [PubMed]

A. Elsheikh and K. Anderson, “Comparative study of corneal strip and extensiometry and inflation tests,” J. R. Soc. Interface46(2), 409–414 (2005).

El-Sheikh, A.

K. Anderson, A. El-Sheikh, and T. Newson, “Application of structural analysis to the mechanical behaviour of the cornea,” J. R. Soc. Interface1(1), 3–15 (2004).
[CrossRef] [PubMed]

Feldman, S. T.

H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998).
[PubMed]

Fontes, B. M.

B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011).
[PubMed]

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Ford, M. R.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Giakoumaki, A.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

Ginis, H. S.

I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
[CrossRef] [PubMed]

Goldich, Y.

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

Grabner, G.

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

Grulkowski, I.

Gualda, E. J.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

Hall, G. W.

C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006).
[PubMed]

Hartstein, M.

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

He, X.

X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Invest. Ophthalmol. Vis. Sci.50(11), 5148–5154 (2009).
[CrossRef] [PubMed]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Hennighausen, H.

H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998).
[PubMed]

Hjorth Simonsen, A.

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res.31(4), 435–441 (1980).
[CrossRef] [PubMed]

Hoeltzel, D. A.

D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992).
[CrossRef] [PubMed]

Holzer, M. P.

M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009).
[CrossRef] [PubMed]

Hu, Z.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
[CrossRef] [PubMed]

Huang, D.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Huber, R.

Huhle, M.

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res.66(1), 97–103 (1998).
[CrossRef] [PubMed]

Husinsky, W.

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

Iskander, D. R.

W. Śródka and D. R. Iskander, “Optically inspired biomechanical model of the human eyeball,” J. Biomed. Opt.13(4), 044034 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Jue, B.

B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” J. Biomech.19(10), 847–853 (1986).
[CrossRef] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Kling, S.

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

Kounis, G. A.

I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
[CrossRef] [PubMed]

Kowalczyk, A.

Kymionis, G. D.

I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
[CrossRef] [PubMed]

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Liu, J.

X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Invest. Ophthalmol. Vis. Sci.50(11), 5148–5154 (2009).
[CrossRef] [PubMed]

Luce, D. A.

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg.31(1), 156–162 (2005).
[CrossRef] [PubMed]

Luz, A.

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Mahmoud, A. M.

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

Malet, F.

J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000).
[CrossRef] [PubMed]

Mannsfeld, A.

M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009).
[CrossRef] [PubMed]

Marcos, S.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

Marsich, M. M.

J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
[CrossRef] [PubMed]

Mattioli, R.

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

Maurice, D. M.

B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” J. Biomech.19(10), 847–853 (1986).
[CrossRef] [PubMed]

McCulloch, A. D.

H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998).
[PubMed]

Merayo-Lloves, J.

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Mobasher, B.

C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006).
[PubMed]

Morad, Y.

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

Newson, T.

K. Anderson, A. El-Sheikh, and T. Newson, “Application of structural analysis to the mechanical behaviour of the cornea,” J. R. Soc. Interface1(1), 3–15 (2004).
[CrossRef] [PubMed]

Nguyen, M.

J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
[CrossRef] [PubMed]

Nichols, J. J.

J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
[CrossRef] [PubMed]

Nogueira, L. P.

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Nosé, W.

B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011).
[PubMed]

Nuijts, R. M. M. A.

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

Ortiz, S.

Oxlund, H.

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res.31(4), 435–441 (1980).
[CrossRef] [PubMed]

Pallikaris, I. G.

I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
[CrossRef] [PubMed]

Pascual, D.

Pérez-Escudero, A.

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Pérez-Merino, P.

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

Price, F. W.

D. M. Choi, R. W. Thompson, and F. W. Price., “Incisional refractive surgery,” Curr. Opin. Ophthalmol.13(4), 237–241 (2002).
[CrossRef] [PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Rabinowitz, Y. S.

Y. S. Rabinowitz, “Keratoconus,” Surv. Ophthalmol.42(4), 297–319 (1998).
[CrossRef] [PubMed]

Rajan, S. D.

C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006).
[PubMed]

Rama, P.

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res.86(5), 783–790 (2008).
[CrossRef] [PubMed]

Ramos, I.

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

Remon, L.

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

Remón, L.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Roberts, C.

C. Roberts, “The cornea is not a piece of plastic,” J. Refract. Surg.16(4), 407–413 (2000).
[PubMed]

Roberts, C. J.

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

Rollins, A. M.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
[CrossRef] [PubMed]

Rosales, P.

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

Roy, A. S.

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
[CrossRef] [PubMed]

Ruckhofer, J.

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

Savary, G.

J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000).
[CrossRef] [PubMed]

Sawides, L.

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

Schuman, J. S.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Seiler, T.

G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol.135(5), 620–627 (2003).
[CrossRef] [PubMed]

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res.66(1), 97–103 (1998).
[CrossRef] [PubMed]

Siedlecki, D.

Siqueira da Silva, R.

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

Spoerl, E.

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol.135(5), 620–627 (2003).
[CrossRef] [PubMed]

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res.66(1), 97–103 (1998).
[CrossRef] [PubMed]

Sródka, W.

W. Śródka and D. R. Iskander, “Optically inspired biomechanical model of the human eyeball,” J. Biomed. Opt.13(4), 044034 (2008).
[CrossRef] [PubMed]

Steindl, C.

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Szkulmowski, M.

Szlag, D.

Tahzib, N. G.

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

Thompson, R. W.

D. M. Choi, R. W. Thompson, and F. W. Price., “Incisional refractive surgery,” Curr. Opin. Ophthalmol.13(4), 237–241 (2002).
[CrossRef] [PubMed]

Tsilimbaris, M. K.

I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
[CrossRef] [PubMed]

van der Heijde, R. G.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Velarde, G. C.

B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011).
[PubMed]

Völker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Webers, C. A. B.

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Wilson, S. E.

W. J. Dupps and S. E. Wilson, “Biomechanics and wound healing in the cornea,” Exp. Eye Res.83(4), 709–720 (2006).
[CrossRef] [PubMed]

Wojtkowski, M.

Wollensak, G.

G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol.135(5), 620–627 (2003).
[CrossRef] [PubMed]

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

Zadok, D.

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

G. Wollensak, E. Spoerl, and T. Seiler, “Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus,” Am. J. Ophthalmol.135(5), 620–627 (2003).
[CrossRef] [PubMed]

M. Doors, N. G. Tahzib, F. A. Eggink, T. T. J. M. Berendschot, C. A. B. Webers, and R. M. M. A. Nuijts, “Use of anterior segment optical coherence tomography to study corneal changes after collagen cross-linking,” Am. J. Ophthalmol.148(6), 844–851.e2 (2009).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Cornea (1)

Y. Goldich, Y. Barkana, Y. Morad, M. Hartstein, I. Avni, and D. Zadok, “Can we measure corneal biomechanical changes after collagen cross-linking in eyes with keratoconus?--a pilot study,” Cornea28(5), 498–502 (2009).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (1)

D. M. Choi, R. W. Thompson, and F. W. Price., “Incisional refractive surgery,” Curr. Opin. Ophthalmol.13(4), 237–241 (2002).
[CrossRef] [PubMed]

Exp. Eye Res. (5)

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res.31(4), 435–441 (1980).
[CrossRef] [PubMed]

W. J. Dupps and S. E. Wilson, “Biomechanics and wound healing in the cornea,” Exp. Eye Res.83(4), 709–720 (2006).
[CrossRef] [PubMed]

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res.86(5), 783–790 (2008).
[CrossRef] [PubMed]

E. Spoerl, M. Huhle, and T. Seiler, “Induction of cross-links in corneal tissue,” Exp. Eye Res.66(1), 97–103 (1998).
[CrossRef] [PubMed]

A. Elsheikh and D. Alhasso, “Mechanical anisotropy of porcine cornea and correlation with stromal microstructure,” Exp. Eye Res.88(6), 1084–1091 (2009).
[CrossRef] [PubMed]

Int. Ophthalmol. Clin. (1)

R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin.51(2), 11–38 (2011).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Invest. Ophthalmol. Vis. Sci.50(11), 5148–5154 (2009).
[CrossRef] [PubMed]

S. Kling, L. Remon, A. Pérez-Escudero, J. Merayo-Lloves, and S. Marcos, “Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments,” Invest. Ophthalmol. Vis. Sci.51(8), 3961–3968 (2010).
[CrossRef] [PubMed]

H. Hennighausen, S. T. Feldman, J. F. Bille, and A. D. McCulloch, “Anterior-posterior strain variation in normally hydrated and swollen rabbit cornea,” Invest. Ophthalmol. Vis. Sci.39(2), 253–262 (1998).
[PubMed]

J. M. Bueno, E. J. Gualda, A. Giakoumaki, P. Pérez-Merino, S. Marcos, and P. Artal, “Multiphoton microscopy of ex vivo corneas after collagen cross-linking,” Invest. Ophthalmol. Vis. Sci.52(8), 5325–5331 (2011).
[CrossRef] [PubMed]

I. G. Pallikaris, G. D. Kymionis, H. S. Ginis, G. A. Kounis, and M. K. Tsilimbaris, “Ocular rigidity in living human eyes,” Invest. Ophthalmol. Vis. Sci.46(2), 409–414 (2005).
[CrossRef] [PubMed]

A. Pérez-Escudero, C. Dorronsoro, L. Sawides, L. Remón, J. Merayo-Lloves, and S. Marcos, “Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface,” Invest. Ophthalmol. Vis. Sci.50(9), 4146–4154 (2009).
[CrossRef] [PubMed]

J. Biomech. (1)

B. Jue and D. M. Maurice, “The mechanical properties of the rabbit and human cornea,” J. Biomech.19(10), 847–853 (1986).
[CrossRef] [PubMed]

J. Biomech. Eng. (1)

D. A. Hoeltzel, P. Altman, K. Buzard, and K. Choe, “Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas,” J. Biomech. Eng.114(2), 202–215 (1992).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

W. Śródka and D. R. Iskander, “Optically inspired biomechanical model of the human eyeball,” J. Biomed. Opt.13(4), 044034 (2008).
[CrossRef] [PubMed]

M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt.16(1), 016005–016007 (2011).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (5)

G. Grabner, R. Eilmsteiner, C. Steindl, J. Ruckhofer, R. Mattioli, and W. Husinsky, “Dynamic corneal imaging,” J. Cataract Refract. Surg.31(1), 163–174 (2005).
[CrossRef] [PubMed]

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg.31(1), 156–162 (2005).
[CrossRef] [PubMed]

P. S. Binder, “Ectasia after laser in situ keratomileusis,” J. Cataract Refract. Surg.29(12), 2419–2429 (2003).
[CrossRef] [PubMed]

G. Wollensak, E. Spoerl, and T. Seiler, “Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking,” J. Cataract Refract. Surg.29(9), 1780–1785 (2003).
[CrossRef] [PubMed]

J. Colin, B. Cochener, G. Savary, and F. Malet, “Correcting keratoconus with intracorneal rings,” J. Cataract Refract. Surg.26(8), 1117–1122 (2000).
[CrossRef] [PubMed]

J. R. Soc. Interface (2)

A. Elsheikh and K. Anderson, “Comparative study of corneal strip and extensiometry and inflation tests,” J. R. Soc. Interface46(2), 409–414 (2005).

K. Anderson, A. El-Sheikh, and T. Newson, “Application of structural analysis to the mechanical behaviour of the cornea,” J. R. Soc. Interface1(1), 3–15 (2004).
[CrossRef] [PubMed]

J. Refract. Surg. (5)

C. Deenadayalu, B. Mobasher, S. D. Rajan, and G. W. Hall, “Refractive change induced by the LASIK flap in a biomechanical finite element model,” J. Refract. Surg.22(3), 286–292 (2006).
[PubMed]

M. P. Holzer, A. Mannsfeld, A. Ehmer, and G. U. Auffarth, “Early outcomes of INTRACOR femtosecond laser treatment for presbyopia,” J. Refract. Surg.25(10), 855–861 (2009).
[CrossRef] [PubMed]

C. Roberts, “The cornea is not a piece of plastic,” J. Refract. Surg.16(4), 407–413 (2000).
[PubMed]

B. M. Fontes, R. Ambrósio, G. C. Velarde, and W. Nosé, “Ocular response analyzer measurements in keratoconus with normal central corneal thickness compared with matched normal control eyes,” J. Refract. Surg.27(3), 209–215 (2011).
[PubMed]

P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg.25(5), 421–428 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Optom. Vis. Sci. (1)

J. J. Nichols, M. M. Marsich, M. Nguyen, J. T. Barr, and M. A. Bullimore, “Overnight orthokeratology,” Optom. Vis. Sci.77(5), 252–259 (2000).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

Y. S. Rabinowitz, “Keratoconus,” Surv. Ophthalmol.42(4), 297–319 (1998).
[CrossRef] [PubMed]

Other (3)

R. F. Steinert and D Huang, eds., Anterior Segment Optical Coherence Tomography (SLACK Incorporated, Thorofare, N.J., 2008).

C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and R. Ambrósio., “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO (2011), pp. E-abstract 4384.

S. Kling, J. J. del Coz, P. Pérez-Merino, J. L. Suarez, and S. Marcos, “Impact of hydration state and storage media on corneal biomechanical properties from in vitro inflation tests and finite element modeling,” submitted to Invest. Ophthalmol. Vis. Sci.

Supplementary Material (1)

» Media 1: AVI (3594 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Detail of the setup used in the experiments (viewed from above). A tilted mirror is fixed to the tube tip of a modified non-contact air tonometer, and provides an optical channel to a custom sOCT imaging instrument (see text for details and angles). In vivo and in vitro eyes were measured. A custom eye holder and an intraocular pressure control system (both in gray) were used in the in vitro eyes.

Fig. 2
Fig. 2

Diagram of the images resulting from the measurements and the corresponding extracted parameters. (a) Measurements of the temporal dynamics of the apex (A-scans) and (b) Measurements of the dynamics (B-scans) of a corneal meridian. 1: Corneal thickness. 2: Mean deformation speed during the increasing deformation period. 3: Peak speed (maximum slope) of the increasing deformation period. 4: Deformation amplitude (peak deformation, dividing the periods of increasing and decreasing deformation). 5: Peak speed of the decreasing deformation period. 6: Mean speed of the decreasing deformation period. 7: Duration of the increasing deformation period. 8: Duration of the decreasing deformation period. 9: overall duration of the deformation event. 10: Diameter of the deformed zone. 11: Displaced volume. 12: Non-deformed corneal radius. 13: Deformed corneal radius. See text for details.

Fig. 3
Fig. 3

Examples of dynamic A-scan measurements on the same porcine eye in vitro, (a) before and (b) after treatments of Riboflavin and (c) UV-cross-linking (c). The vertical axis represents axial depth (with the anterior corneal surface down) and the horizontal axis represents time.

Fig. 4
Fig. 4

Single-frame excerpts from an example video recording (Media 1) of the dynamics of horizontal sections of the cornea (B-scans), for three different conditions of the same in vitro porcine eye: (a) virgin eye with no treatment; (b) after instillation of Riboflavin; and (c) after UV-cross-linking. The stable non-deformed cornea (reference condition) is shown in red, and the deformed cornea is overlapped in green.

Fig. 5
Fig. 5

(a) Deformation depth and corneal thickness (measured before the deformation event) at the corneal apex, in millimeters, for the different conditions. (b) Deformation amplitude / corneal thickness ratio. Error bars for the human eye in vivo (green columns) indicate the standard deviation across measurements for the same eye. Error Bars for porcine eyes in vitro (blue columns) indicate the standard deviations across measurements on different eyes.

Fig. 6
Fig. 6

(a) Duration of the corneal deformation parameters (overall deformation, increasing deformation period and decreasing deformation period) measured at the corneal apex, for the different conditions. (b) Time ratio (increasing deformation period/decreasing deformation period). The red horizontal line indicates the values at which the increasing deformation period duration equals the decreasing deformation period duration (time-symmetrical deformation).

Fig. 7
Fig. 7

(a) Deformation speed at the corneal apex, for the different conditions, obtained from measurements at the apex. (b) Peak-Speed ratio (increasing deformation period/decreasing deformation period). The red horizontal line indicates the values at which the peak deformation speed of the increasing deformation period equals the peak speed of the decreasing deformation period.

Fig. 8
Fig. 8

Longitudinal changes induced in the parameters describing the dynamics of the corneal apex by different treatments on the same eyes. LEFT Panel: After de-epitheliazation and instillation of Riboflavin (RIBO, in neutral blue); and after additional UV-cross-linking (CXL, in light blue). Data of the left panel represent average and standard deviations of the evolution of different eyes. RIGHT Panel: After de-epitheliazation alone (De-EPI, in green). Data on the right panel represent average and standard deviation of repeated measurements of one eye.

Fig. 9
Fig. 9

Deformation parameters from dynamic images of the spatial deformation of the cornea (B-scan measurements along the horizontal meridian), for porcine in vitro eyes with different treatments. (a) Deformation diameter, non-deformed corneal radius and peak deformed corneal radius (the curvature sign is inverted in all cases). (b) Displaced volume. Error bars indicate the standard deviations across measurements on different eyes.

Metrics