Abstract

Stimulating cells by using light is a non-invasive technique that provides flexibility in probing different locations while minimizing unintended effects on the system. We propose a new way to make cells photosensitive without using genetic or chemical manipulation, which alters natural cells, in conjunction with Quantum Dots (QDs). Remote switching of cellular activity by optical QD excitation is demonstrated by integrating QDs with cells: CdTe QD films with prostate cancer (LnCap) cells, and CdSe QD films and probes with cortical neurons. Changes in membrane potential and ionic currents are recorded by using the patch-clamp method. Upon excitation, the ion channels in the cell membrane were activated, resulting in hyperpolarization or depolarization of the cell.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
    [CrossRef] [PubMed]
  2. M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
    [CrossRef]
  3. G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
    [CrossRef] [PubMed]
  4. V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
    [CrossRef] [PubMed]
  5. F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
    [CrossRef] [PubMed]
  6. P. Gorostiza and E. Y. Isacoff, “Optical switches for remote and noninvasive control of cell signaling,” Science322(5900), 395–399 (2008).
    [CrossRef] [PubMed]
  7. E. M. Callaway and L. C. Katz, “Photostimulation using caged glutamate reveals functional circuitry in living brain slices,” Proc. Natl. Acad. Sci. U.S.A.90(16), 7661–7665 (1993).
    [CrossRef] [PubMed]
  8. F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006).
    [CrossRef] [PubMed]
  9. H. Y. Hsu, H. Lee, A. Jamshidi, J. Valley, S. N. Pei, E. Isocaff, and M. C. Wu, “Optical Control of Neural Activity with Amorphous Silicon Light Addressable Electrodes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper CTuD2.
  10. X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(4), 349–366 (2010).
    [CrossRef] [PubMed]
  11. O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007).
    [CrossRef] [PubMed]
  12. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
    [CrossRef] [PubMed]
  13. E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).
  14. J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005).
    [CrossRef]
  15. N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
    [CrossRef] [PubMed]
  16. T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
    [CrossRef] [PubMed]
  17. D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, New Jersey 1999).
  18. K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011).
    [CrossRef] [PubMed]
  19. C.-C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-Layer self-assembly of CdTe quantum dots,” Appl. Phys. Lett.93(16), 163107 (2008).
    [CrossRef]
  20. S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
    [CrossRef]
  21. N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
    [CrossRef] [PubMed]
  22. D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. LaMantia, J. O. McNamara, and L. E. White, Neuroscience (Sinauer, 2008), Chap. 3.

2011 (1)

K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011).
[CrossRef] [PubMed]

2010 (1)

X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(4), 349–366 (2010).
[CrossRef] [PubMed]

2009 (1)

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

2008 (3)

P. Gorostiza and E. Y. Isacoff, “Optical switches for remote and noninvasive control of cell signaling,” Science322(5900), 395–399 (2008).
[CrossRef] [PubMed]

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

C.-C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-Layer self-assembly of CdTe quantum dots,” Appl. Phys. Lett.93(16), 163107 (2008).
[CrossRef]

2007 (5)

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
[CrossRef] [PubMed]

O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007).
[CrossRef] [PubMed]

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
[CrossRef] [PubMed]

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

2006 (2)

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006).
[CrossRef] [PubMed]

2005 (3)

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005).
[CrossRef]

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

2004 (1)

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
[CrossRef] [PubMed]

2003 (1)

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

1993 (1)

E. M. Callaway and L. C. Katz, “Photostimulation using caged glutamate reveals functional circuitry in living brain slices,” Proc. Natl. Acad. Sci. U.S.A.90(16), 7661–7665 (1993).
[CrossRef] [PubMed]

Aaron, H. L.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Adamantidis, A.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
[CrossRef] [PubMed]

Aravanis, A. M.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
[CrossRef] [PubMed]

Baier, H.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Ballerini, L.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Bartel, J. A.

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Bidaux, G.

N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
[CrossRef] [PubMed]

Boyden, E. S.

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006).
[CrossRef] [PubMed]

Brodwick, M.

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

Cacciari, B.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Callaway, E. M.

E. M. Callaway and L. C. Katz, “Photostimulation using caged glutamate reveals functional circuitry in living brain slices,” Proc. Natl. Acad. Sci. U.S.A.90(16), 7661–7665 (1993).
[CrossRef] [PubMed]

Carion, O.

O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007).
[CrossRef] [PubMed]

Casalis, L.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Cellot, G.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Cheng, Z.

X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(4), 349–366 (2010).
[CrossRef] [PubMed]

Chung, L. W. K.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
[CrossRef] [PubMed]

Cilia, E.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Cipollone, S.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Cook, D. G.

K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011).
[CrossRef] [PubMed]

Cui, Y.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
[CrossRef] [PubMed]

de Lecea, L.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
[CrossRef] [PubMed]

de Mello Donegá, C.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Deisseroth, K.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
[CrossRef] [PubMed]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006).
[CrossRef] [PubMed]

Del Bene, F.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Dubertret, B.

O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007).
[CrossRef] [PubMed]

Flannery, J.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Flourakis, M.

N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
[CrossRef] [PubMed]

Fortin, D. L.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Gambazzi, L.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Gao, X.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
[CrossRef] [PubMed]

Gelain, F.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Gheith, M. K.

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Giordani, S.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Giugliano, M.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Gomez, N.

J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005).
[CrossRef]

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

Gorostiza, P.

P. Gorostiza and E. Y. Isacoff, “Optical switches for remote and noninvasive control of cell signaling,” Science322(5900), 395–399 (2008).
[CrossRef] [PubMed]

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Grandolfo, M.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

He, X.

X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(4), 349–366 (2010).
[CrossRef] [PubMed]

Hickey, S. G.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Ignatius, M. J.

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Isacoff, E. Y.

P. Gorostiza and E. Y. Isacoff, “Optical switches for remote and noninvasive control of cell signaling,” Science322(5900), 395–399 (2008).
[CrossRef] [PubMed]

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Jan, E.

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

Katz, L. C.

E. M. Callaway and L. C. Katz, “Photostimulation using caged glutamate reveals functional circuitry in living brain slices,” Proc. Natl. Acad. Sci. U.S.A.90(16), 7661–7665 (1993).
[CrossRef] [PubMed]

Kolstad, K. D.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Korgel, B. A.

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005).
[CrossRef]

Kotov, N. A.

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Kramer, R. H.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Lagostena, L.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Levenson, R. M.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
[CrossRef] [PubMed]

Lin, L. Y.

C.-C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-Layer self-assembly of CdTe quantum dots,” Appl. Phys. Lett.93(16), 163107 (2008).
[CrossRef]

Liopo, A. V.

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Lovat, V.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Mahler, B.

O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007).
[CrossRef] [PubMed]

Markram, H.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Molokanova, E.

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Motamedi, M.

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Naasani, I.

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Nie, S.

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
[CrossRef] [PubMed]

Numano, R.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Pantarotto, D.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Pappas, T. C.

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Pons, T.

O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007).
[CrossRef] [PubMed]

Prato, M.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Pratt, K. G.

K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011).
[CrossRef] [PubMed]

Prevarskaya, N.

N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
[CrossRef] [PubMed]

Rancic, V.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Righi, M.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Saunders, A. E.

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

Savtchenko, A.

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Scaini, D.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Schmidt, C. E.

J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005).
[CrossRef]

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

Scott, E. K.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Shieh, F.

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

Shim, B. S.

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Shuba, Y.

N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
[CrossRef] [PubMed]

Sinani, V. A.

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Skryma, R.

N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
[CrossRef] [PubMed]

Spalluto, G.

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Sucapane, A.

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Sullivan, J. M.

K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011).
[CrossRef] [PubMed]

Swart, I.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Szobota, S.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Trauner, D.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Treadway, J. A.

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Tu, C.-C.

C.-C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-Layer self-assembly of CdTe quantum dots,” Appl. Phys. Lett.93(16), 163107 (2008).
[CrossRef]

Tulyathan, O.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

van Driel, F.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Volgraf, M.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Wang, K.

X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(4), 349–366 (2010).
[CrossRef] [PubMed]

Wang, L. P.

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006).
[CrossRef] [PubMed]

Wickramanyake, W. M. S.

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

Wicksted, J. P.

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Winter, J. O.

J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005).
[CrossRef]

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

Wuister, S. F.

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

Wyart, C.

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
[CrossRef] [PubMed]

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006).
[CrossRef] [PubMed]

Zhao, W.

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Zimmerman, E. C.

K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

M. K. Gheith, T. C. Pappas, A. V. Liopo, V. A. Sinani, B. S. Shim, M. Motamedi, J. P. Wicksted, and N. A. Kotov, “Stimulation of neural cells by lateral currents in conductive layer-by-layer films of single-walled carbon nanotubes,” Adv. Mater. (Deerfield Beach Fla.)18(22), 2975–2979 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

C.-C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-Layer self-assembly of CdTe quantum dots,” Appl. Phys. Lett.93(16), 163107 (2008).
[CrossRef]

Biophotonics Int. (1)

E. Molokanova, J. A. Bartel, W. Zhao, I. Naasani, M. J. Ignatius, J. A. Treadway, and A. Savtchenko, “Quantum dots move beyond fluorescence imaging,” Biophotonics Int.2008(June), 26–31 (2008).

Cell Death Differ. (1)

N. Prevarskaya, R. Skryma, G. Bidaux, M. Flourakis, and Y. Shuba, “Ion channels in death and differentiation of prostate cancer cells,” Cell Death Differ.14(7), 1295–1304 (2007).
[CrossRef] [PubMed]

Nano Lett. (3)

S. F. Wuister, I. Swart, F. van Driel, S. G. Hickey, and C. de Mello Donegá, “Highly luminescent water-soluble CdTe quantum dots,” Nano Lett.3(4), 503–507 (2003).
[CrossRef]

T. C. Pappas, W. M. S. Wickramanyake, E. Jan, M. Motamedi, M. Brodwick, and N. A. Kotov, “Nanoscale engineering of a cellular interface with semiconductor nanoparticle films for photoelectric stimulation of neurons,” Nano Lett.7(2), 513–519 (2007).
[CrossRef] [PubMed]

V. Lovat, D. Pantarotto, L. Lagostena, B. Cacciari, M. Grandolfo, M. Righi, G. Spalluto, M. Prato, and L. Ballerini, “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett.5(6), 1107–1110 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol.22(8), 969–976 (2004).
[CrossRef] [PubMed]

Nat. Methods (1)

F. Zhang, L. P. Wang, E. S. Boyden, and K. Deisseroth, “Channelrhodopsin-2 and optical control of excitable cells,” Nat. Methods3(10), 785–792 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

G. Cellot, E. Cilia, S. Cipollone, V. Rancic, A. Sucapane, S. Giordani, L. Gambazzi, H. Markram, M. Grandolfo, D. Scaini, F. Gelain, L. Casalis, M. Prato, M. Giugliano, and L. Ballerini, “Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts,” Nat. Nanotechnol.4(2), 126–133 (2009).
[CrossRef] [PubMed]

Nat. Neurosci. (1)

K. G. Pratt, E. C. Zimmerman, D. G. Cook, and J. M. Sullivan, “Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling,” Nat. Neurosci.14(9), 1112–1114 (2011).
[CrossRef] [PubMed]

Nat. Protoc. (1)

O. Carion, B. Mahler, T. Pons, and B. Dubertret, “Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging,” Nat. Protoc.2(10), 2383–2390 (2007).
[CrossRef] [PubMed]

Nat. Rev. Neurosci. (1)

F. Zhang, A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-breakers: optical technologies for probing neural signals and systems,” Nat. Rev. Neurosci.8(8), 577–581 (2007).
[CrossRef] [PubMed]

Neuron (1)

S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, and E. Y. Isacoff, “Remote control of neuronal activity with a light-gated glutamate receptor,” Neuron54(4), 535–545 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

E. M. Callaway and L. C. Katz, “Photostimulation using caged glutamate reveals functional circuitry in living brain slices,” Proc. Natl. Acad. Sci. U.S.A.90(16), 7661–7665 (1993).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. O. Winter, N. Gomez, B. A. Korgel, and C. E. Schmidt, “Quantum dots for electrical stimulation of neural cells,” Proc. SPIE5705, 235–246 (2005).
[CrossRef]

Science (1)

P. Gorostiza and E. Y. Isacoff, “Optical switches for remote and noninvasive control of cell signaling,” Science322(5900), 395–399 (2008).
[CrossRef] [PubMed]

Talanta (1)

N. Gomez, J. O. Winter, F. Shieh, A. E. Saunders, B. A. Korgel, and C. E. Schmidt, “Challenges in quantum dot-neuron active interfacing,” Talanta67(3), 462–471 (2005).
[CrossRef] [PubMed]

Wiley Interdiscip Rev Nanomed Nanobiotechnol (1)

X. He, K. Wang, and Z. Cheng, “In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes,” Wiley Interdiscip Rev Nanomed Nanobiotechnol2(4), 349–366 (2010).
[CrossRef] [PubMed]

Other (3)

D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, New Jersey 1999).

H. Y. Hsu, H. Lee, A. Jamshidi, J. Valley, S. N. Pei, E. Isocaff, and M. C. Wu, “Optical Control of Neural Activity with Amorphous Silicon Light Addressable Electrodes,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2010), paper CTuD2.

D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A. S. LaMantia, J. O. McNamara, and L. E. White, Neuroscience (Sinauer, 2008), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Interaction of a QD with a cell membrane.

Fig. 2
Fig. 2

(a) Definition of distances between charges and cell membrane. (b) Potential generated by electron-hole pairs in a quantum dot versus distance.

Fig. 3
Fig. 3

(a) UV-visible absorbance and photoluminescence (PL) spectra of CdTe QDs [19]. (b) LnCap cell cultured on the CdTe QD film.

Fig. 4
Fig. 4

Patch-clamp recording: effect of CdTe QDs excitation on membrane potential.

Fig. 5
Fig. 5

UV-visible absorbance and PL spectra of CdSe QDs. (Figure source, www.nanocotechnologies.com.)

Fig. 6
Fig. 6

(a) Current-clamped cortical neuron recording on CdSe QD film. (b) Voltage-clamped cortical neuron recording on CdSe QD film.

Fig. 7
Fig. 7

Fluorescence image of a micropipette coated with CdSe QDs.

Fig. 8
Fig. 8

Patch-clamp recording of CdSe QD-cell system on ionic currents. (a) Light excitation 550 nm and (b) light excitation 550 nm and 720 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E = 1 4πε { k 2 r r ^ × p × r ^ +( 1 r 3 ik r 2 )[ 3 r ^ ( r ^ p ) p ] } e ikr
V t = 1 4πε i q i r i .
V= V t e r 1 / k 0 .

Metrics