Abstract

Laser-assisted killing of gold nanoparticle targeted macrophages was investigated. Using pressure transient detection, flash photography and transmission electron microscopy (TEM) imaging, we studied the mechanism of single cell damage by vapor bubble formation around gold nanospheres induced by nanosecond laser pulses. The influence of the number of irradiating laser pulses and of particle size and concentration on the threshold for acute cell damage was determined. While the single pulse damage threshold is independent of the particle size, the threshold decreases with increasing particle size when using trains of pulses. The dependence of the cell damage threshold on the nanoparticle concentration during incubation reveals that particle accumulation and distribution inside the cell plays a key role in tissue imaging or cell damaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
    [CrossRef]
  2. T. Li, L. Guo, Z. Wang, “Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions,” Anal. Sci. 24(7), 907–910 (2008).
    [CrossRef] [PubMed]
  3. X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
    [CrossRef] [PubMed]
  4. P.-C. Li, C.-R. C. Wang, D.-B. Shieh, C.-W. Wei, C.-K. Liao, C. Poe, S. Jhan, A. A. Ding, Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008).
    [CrossRef] [PubMed]
  5. S. J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, J. H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009).
    [CrossRef] [PubMed]
  6. T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
    [CrossRef] [PubMed]
  7. X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [CrossRef] [PubMed]
  8. L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
    [CrossRef] [PubMed]
  9. L. Tong, J.-X. Cheng, “Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria,” Nanomedicine (Lond) 4(3), 265–276 (2009).
    [CrossRef] [PubMed]
  10. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
    [CrossRef] [PubMed]
  11. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
    [CrossRef] [PubMed]
  12. V. P. Zharov, R. R. Letfullin, E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
    [CrossRef]
  13. G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
    [CrossRef] [PubMed]
  14. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [CrossRef]
  15. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
    [CrossRef] [PubMed]
  16. S. Hu, L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
    [CrossRef] [PubMed]
  17. D. O. Lapotko, “Laser-induced bubbles in living cells,” Lasers Surg. Med. 38(3), 240–248 (2006).
    [CrossRef] [PubMed]
  18. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
    [CrossRef] [PubMed]
  19. V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
    [CrossRef] [PubMed]
  20. D. Lapotko, “Plasmonic nanobubbles as tunable cellular probes for cancer theranostics,” Cancers (Basel) 3(1), 802–840 (2011).
    [CrossRef] [PubMed]
  21. L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
    [CrossRef] [PubMed]
  22. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
    [CrossRef] [PubMed]
  23. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
    [CrossRef] [PubMed]
  24. D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
    [CrossRef] [PubMed]
  25. D. O. Lapotko, E. Y. Lukianova-Hleb, A. A. Oraevsky, “Clusterization of nanoparticles during their interaction with living cells,” Nanomedicine (Lond) 2(2), 241–253 (2007).
    [CrossRef] [PubMed]
  26. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291–304 (2011).
    [CrossRef] [PubMed]
  27. F. A. Jaffer, P. Libby, R. Weissleder, “Molecular and cellular imaging of atherosclerosis: emerging applications,” J. Am. Coll. Cardiol. 47(7), 1328–1338 (2006).
    [CrossRef] [PubMed]
  28. A. C. Li, C. K. Glass, “The macrophage foam cell as a target for therapeutic intervention,” Nat. Med. 8(11), 1235–1242 (2002).
    [CrossRef] [PubMed]
  29. J. R. McCarthy, F. A. Jaffer, R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8-9), 983–987 (2006).
    [CrossRef] [PubMed]
  30. Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
    [CrossRef] [PubMed]
  31. T. Gisler, H. Rüger, S. U. Egelhaaf, J. Tschumi, P. Schurtenberger, J. Rička, “Mode-selective dynamic light scattering: theory versus experimental realization,” Appl. Opt. 34(18), 3546–3553 (1995).
    [CrossRef] [PubMed]
  32. B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
    [CrossRef] [PubMed]
  33. Z. Werb, Z. A. Cohn, “Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles,” J. Biol. Chem. 247(8), 2439–2446 (1972).
    [PubMed]
  34. T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
    [CrossRef]
  35. C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
    [CrossRef] [PubMed]
  36. L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).
  37. G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
    [CrossRef] [PubMed]
  38. J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010).
    [CrossRef] [PubMed]
  39. J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
    [CrossRef] [PubMed]
  40. B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
    [CrossRef]
  41. P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
    [CrossRef] [PubMed]
  42. R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010).
    [CrossRef] [PubMed]
  43. D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
    [CrossRef] [PubMed]
  44. S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
    [CrossRef]
  45. Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
    [CrossRef] [PubMed]

2011

2010

J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010).
[CrossRef] [PubMed]

Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, “Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,” Opt. Express 18(9), 8867–8878 (2010).
[CrossRef] [PubMed]

R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010).
[CrossRef] [PubMed]

S. Hu, L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
[CrossRef] [PubMed]

2009

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

L. Tong, J.-X. Cheng, “Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria,” Nanomedicine (Lond) 4(3), 265–276 (2009).
[CrossRef] [PubMed]

L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

S. J. Oh, J. Kang, I. Maeng, J.-S. Suh, Y.-M. Huh, S. Haam, J. H. Son, “Nanoparticle-enabled terahertz imaging for cancer diagnosis,” Opt. Express 17(5), 3469–3475 (2009).
[CrossRef] [PubMed]

2008

P.-C. Li, C.-R. C. Wang, D.-B. Shieh, C.-W. Wei, C.-K. Liao, C. Poe, S. Jhan, A. A. Ding, Y. N. Wu, “In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods,” Opt. Express 16(23), 18605–18615 (2008).
[CrossRef] [PubMed]

P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[CrossRef] [PubMed]

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef] [PubMed]

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
[CrossRef] [PubMed]

T. Li, L. Guo, Z. Wang, “Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions,” Anal. Sci. 24(7), 907–910 (2008).
[CrossRef] [PubMed]

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

2007

D. O. Lapotko, E. Y. Lukianova-Hleb, A. A. Oraevsky, “Clusterization of nanoparticles during their interaction with living cells,” Nanomedicine (Lond) 2(2), 241–253 (2007).
[CrossRef] [PubMed]

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15(19), 12277–12285 (2007).
[CrossRef] [PubMed]

2006

D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

D. O. Lapotko, “Laser-induced bubbles in living cells,” Lasers Surg. Med. 38(3), 240–248 (2006).
[CrossRef] [PubMed]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[CrossRef] [PubMed]

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

J. R. McCarthy, F. A. Jaffer, R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8-9), 983–987 (2006).
[CrossRef] [PubMed]

F. A. Jaffer, P. Libby, R. Weissleder, “Molecular and cellular imaging of atherosclerosis: emerging applications,” J. Am. Coll. Cardiol. 47(7), 1328–1338 (2006).
[CrossRef] [PubMed]

2005

V. P. Zharov, R. R. Letfullin, E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

2003

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

2002

A. C. Li, C. K. Glass, “The macrophage foam cell as a target for therapeutic intervention,” Nat. Med. 8(11), 1235–1242 (2002).
[CrossRef] [PubMed]

1999

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

1997

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

1995

1972

Z. Werb, Z. A. Cohn, “Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles,” J. Biol. Chem. 247(8), 2439–2446 (1972).
[PubMed]

1917

L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).

Aleinikova, O.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Allen, C.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
[CrossRef] [PubMed]

Anderson, L. J. E.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Anderson, R. R.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Asshauer, T.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Austin, L.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Bansal, V.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Basta, G.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Basu, A.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Baumgart, J.

J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010).
[CrossRef] [PubMed]

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

Bhonde, R. R.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Bintig, W.

J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010).
[CrossRef] [PubMed]

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

Blank, F.

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

Cesbron, Y.

R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010).
[CrossRef] [PubMed]

Chan, W. C. W.

B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[CrossRef] [PubMed]

Chaudhary, M.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Chen, H.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Chen, Y.-S.

Cheng, J. X.

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Cheng, J.-X.

L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

L. Tong, J.-X. Cheng, “Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria,” Nanomedicine (Lond) 4(3), 265–276 (2009).
[CrossRef] [PubMed]

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

Chithrani, B. D.

B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[CrossRef] [PubMed]

Chithrani, D. B.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
[CrossRef] [PubMed]

Chiu, W.

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

Cho, M. Y.

Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
[CrossRef] [PubMed]

Choi, B. S.

Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
[CrossRef] [PubMed]

Chung, B. H.

Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
[CrossRef] [PubMed]

Cohn, Z. A.

Z. Werb, Z. A. Cohn, “Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles,” J. Biol. Chem. 247(8), 2439–2446 (1972).
[PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Cortie, M. B.

D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

Coutts, J.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Dai, Q.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

De, M.

P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[CrossRef] [PubMed]

Del Turco, S.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Delacrétaz, G.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Ding, A. A.

Dunne, M.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
[CrossRef] [PubMed]

Egelhaaf, S. U.

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef] [PubMed]

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Emelianov, S.

Ertmer, W.

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Frenz, M.

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, M. Frenz, “Vapor bubble generation around gold nano-particles and its application to damaging of cells,” Biomed. Opt. Express 2(2), 291–304 (2011).
[CrossRef] [PubMed]

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Frey, W.

Fu, C.

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

Galitovskaya, E. N.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

V. P. Zharov, R. R. Letfullin, E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Gehr, P.

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

Ghazani, A. A.

B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[CrossRef] [PubMed]

Ghosh, P.

P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[CrossRef] [PubMed]

Gisler, T.

Glass, C. K.

A. C. Li, C. K. Glass, “The macrophage foam cell as a target for therapeutic intervention,” Nat. Med. 8(11), 1235–1242 (2002).
[CrossRef] [PubMed]

Guo, L.

T. Li, L. Guo, Z. Wang, “Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions,” Anal. Sci. 24(7), 907–910 (2008).
[CrossRef] [PubMed]

Haam, S.

Hafner, J. H.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Han, G.

P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[CrossRef] [PubMed]

Hansen, E.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

Hansen, M. N.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Heisterkamp, A.

J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010).
[CrossRef] [PubMed]

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

Homan, K.

Hu, S.

S. Hu, L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef] [PubMed]

Huff, T. B.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Huh, Y.-M.

Huo, Q.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Jaeger, M.

Jaffer, F. A.

F. A. Jaffer, P. Libby, R. Weissleder, “Molecular and cellular imaging of atherosclerosis: emerging applications,” J. Am. Coll. Cardiol. 47(7), 1328–1338 (2006).
[CrossRef] [PubMed]

J. R. McCarthy, F. A. Jaffer, R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8-9), 983–987 (2006).
[CrossRef] [PubMed]

Jaffray, D. A.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
[CrossRef] [PubMed]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef] [PubMed]

Jansen, E. D.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Jhan, S.

Joe, E. K.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Johnson, C.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

Kang, J.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Kelly, T.

V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

Khant, H. A.

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

Khlebtsov, B.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Khlebtsov, N. G.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Kim, C. K.

P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[CrossRef] [PubMed]

Kim, S.

Kitz, M.

Klaase, J. M.

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Knowles, G.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Kruizinga, P.

Kuetemeyer, K.

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

Kürzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Kusmic, C.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Lapotko, D.

D. Lapotko, “Plasmonic nanobubbles as tunable cellular probes for cancer theranostics,” Cancers (Basel) 3(1), 802–840 (2011).
[CrossRef] [PubMed]

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Lapotko, D. O.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

D. O. Lapotko, E. Y. Lukianova-Hleb, A. A. Oraevsky, “Clusterization of nanoparticles during their interaction with living cells,” Nanomedicine (Lond) 2(2), 241–253 (2007).
[CrossRef] [PubMed]

D. O. Lapotko, “Laser-induced bubbles in living cells,” Lasers Surg. Med. 38(3), 240–248 (2006).
[CrossRef] [PubMed]

Lazzerini, G.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Letfullin, R. R.

V. P. Zharov, R. R. Letfullin, E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Lévy, R.

R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010).
[CrossRef] [PubMed]

Li, A. C.

A. C. Li, C. K. Glass, “The macrophage foam cell as a target for therapeutic intervention,” Nat. Med. 8(11), 1235–1242 (2002).
[CrossRef] [PubMed]

Li, P.-C.

Li, T.

T. Li, L. Guo, Z. Wang, “Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions,” Anal. Sci. 24(7), 907–910 (2008).
[CrossRef] [PubMed]

Liao, C.-K.

Libby, P.

F. A. Jaffer, P. Libby, R. Weissleder, “Molecular and cellular imaging of atherosclerosis: emerging applications,” J. Am. Coll. Cardiol. 47(7), 1328–1338 (2006).
[CrossRef] [PubMed]

Lim, Y. T.

Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
[CrossRef] [PubMed]

Lin, C. P.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Link, S.

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Liu, X.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Lubatschowski, H.

J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010).
[CrossRef] [PubMed]

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

Lukianova, E.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Lukianova-Hleb, E. Y.

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

D. O. Lapotko, E. Y. Lukianova-Hleb, A. A. Oraevsky, “Clusterization of nanoparticles during their interaction with living cells,” Nanomedicine (Lond) 2(2), 241–253 (2007).
[CrossRef] [PubMed]

Maeng, I.

Manohar, S.

McCarthy, J. R.

J. R. McCarthy, F. A. Jaffer, R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8-9), 983–987 (2006).
[CrossRef] [PubMed]

Melnikov, A.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Mercer, K. E.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

Mikhailovsky, A.

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

Mohamed, M. B.

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Mühlfeld, C.

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

Ngezahayo, A.

J. Baumgart, W. Bintig, A. Ngezahayo, H. Lubatschowski, A. Heisterkamp, “Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection,” Opt. Express 18(3), 2219–2229 (2010).
[CrossRef] [PubMed]

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Noh, Y.-W.

Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
[CrossRef] [PubMed]

Ochs, M.

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

Oh, S. J.

Oraevsky, A.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Oraevsky, A. A.

D. O. Lapotko, E. Y. Lukianova-Hleb, A. A. Oraevsky, “Clusterization of nanoparticles during their interaction with living cells,” Nanomedicine (Lond) 2(2), 241–253 (2007).
[CrossRef] [PubMed]

Pasanisi, E.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Pianelli, M.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Picano, E.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Pissuwan, D.

D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

Pitsillides, C. M.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Poe, C.

Potapnev, M.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Preisser, S.

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Rayleigh, L.

L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).

Ricka, J.

Rotello, V. M.

P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[CrossRef] [PubMed]

Rothen-Rutishauser, B.

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

Rüger, H.

Sastry, M.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Schurtenberger, P.

Sée, V.

R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010).
[CrossRef] [PubMed]

Shaheen, U.

R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010).
[CrossRef] [PubMed]

Shieh, D.-B.

Shukla, R.

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Smeltzer, M. S.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

Sokolov, K.

Son, J. H.

Sönnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Steenbergen, W.

Stewart, J.

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
[CrossRef] [PubMed]

Suh, J.-S.

Thalmann, G. N.

Tong, L.

L. Tong, J.-X. Cheng, “Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria,” Nanomedicine (Lond) 4(3), 265–276 (2009).
[CrossRef] [PubMed]

L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Tschumi, J.

Tuchin, V.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Vaartjes, S. E.

Valenzuela, S. M.

D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

van den Engh, F. M.

van Hespen, J. C. G.

van Leeuwen, T. G.

Vanhecke, D.

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

Venneri, L.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Vesentini, N.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

Wang, C.-R. C.

Wang, L. V.

S. Hu, L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

Wang, Z.

T. Li, L. Guo, Z. Wang, “Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions,” Anal. Sci. 24(7), 907–910 (2008).
[CrossRef] [PubMed]

Wei, A.

L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

Wei, C.-W.

Wei, Q.

L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Wei, X.

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Weissleder, R.

F. A. Jaffer, P. Libby, R. Weissleder, “Molecular and cellular imaging of atherosclerosis: emerging applications,” J. Am. Coll. Cardiol. 47(7), 1328–1338 (2006).
[CrossRef] [PubMed]

J. R. McCarthy, F. A. Jaffer, R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8-9), 983–987 (2006).
[CrossRef] [PubMed]

Welch, A. J.

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Werb, Z.

Z. Werb, Z. A. Cohn, “Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles,” J. Biol. Chem. 247(8), 2439–2446 (1972).
[PubMed]

Wetterwald, A.

Wu, G.

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

Wu, Y. N.

Zasadzinski, J. A.

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

Zhao, Y.

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Zharov, V. P.

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

V. P. Zharov, R. R. Letfullin, E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Zou, J.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

Adv. Drug Deliv. Rev.

P. Ghosh, G. Han, M. De, C. K. Kim, V. M. Rotello, “Gold nanoparticles in delivery applications,” Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, J. X. Cheng, “Gold nanorods mediate tumor cell death by compromising membrane integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007).
[CrossRef] [PubMed]

Anal. Sci.

T. Li, L. Guo, Z. Wang, “Gold nanoparticle-based surface enhanced Raman scattering spectroscopic assay for the detection of protein-protein interactions,” Anal. Sci. 24(7), 907–910 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997).
[CrossRef]

Biomed. Opt. Express

Biophys. J.

V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006).
[CrossRef] [PubMed]

C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003).
[CrossRef] [PubMed]

Cancer Lett.

D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006).
[CrossRef] [PubMed]

Cancers (Basel)

D. Lapotko, “Plasmonic nanobubbles as tunable cellular probes for cancer theranostics,” Cancers (Basel) 3(1), 802–840 (2011).
[CrossRef] [PubMed]

Cardiovasc. Res.

G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, E. Picano, “In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound,” Cardiovasc. Res. 58(1), 156–161 (2003).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

X. Liu, Q. Dai, L. Austin, J. Coutts, G. Knowles, J. Zou, H. Chen, Q. Huo, “A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering,” J. Am. Chem. Soc. 130(9), 2780–2782 (2008).
[CrossRef] [PubMed]

G. Wu, A. Mikhailovsky, H. A. Khant, C. Fu, W. Chiu, J. A. Zasadzinski, “Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells,” J. Am. Chem. Soc. 130(26), 8175–8177 (2008).
[CrossRef] [PubMed]

J. Am. Coll. Cardiol.

F. A. Jaffer, P. Libby, R. Weissleder, “Molecular and cellular imaging of atherosclerosis: emerging applications,” J. Am. Coll. Cardiol. 47(7), 1328–1338 (2006).
[CrossRef] [PubMed]

J. Biol. Chem.

Z. Werb, Z. A. Cohn, “Plasma membrane synthesis in the macrophage following phagocytosis of polystyrene latex particles,” J. Biol. Chem. 247(8), 2439–2446 (1972).
[PubMed]

J. Biomed. Opt.

J. Baumgart, K. Kuetemeyer, W. Bintig, A. Ngezahayo, W. Ertmer, H. Lubatschowski, A. Heisterkamp, “Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery,” J. Biomed. Opt. 14(5), 054040 (2009).
[CrossRef] [PubMed]

S. Hu, L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt. 15(1), 011101 (2010).
[CrossRef] [PubMed]

J. Control. Release

L. J. E. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010).
[CrossRef] [PubMed]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[CrossRef]

S. Link, M. B. Mohamed, M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

J. Phys. D Appl. Phys.

V. P. Zharov, R. R. Letfullin, E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005).
[CrossRef]

Langmuir

R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir 21(23), 10644–10654 (2005).
[CrossRef] [PubMed]

Lasers Med. Sci.

X. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef] [PubMed]

Lasers Surg. Med.

D. O. Lapotko, “Laser-induced bubbles in living cells,” Lasers Surg. Med. 38(3), 240–248 (2006).
[CrossRef] [PubMed]

V. P. Zharov, E. N. Galitovskaya, C. Johnson, T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005).
[CrossRef] [PubMed]

Nano Lett.

B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6(4), 662–668 (2006).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3(7), 935–938 (2003).
[CrossRef]

Nano Rev

R. Lévy, U. Shaheen, Y. Cesbron, V. Sée, “Gold nanoparticles delivery in mammalian live cells: a critical review,” Nano Rev 1(0), 4889–4907 (2010).
[CrossRef] [PubMed]

Nanomedicine

D. B. Chithrani, M. Dunne, J. Stewart, C. Allen, D. A. Jaffray, “Cellular uptake and transport of gold nanoparticles incorporated in a liposomal carrier,” Nanomedicine 6(1), 161–169 (2010).
[CrossRef] [PubMed]

Nanomedicine (Lond)

D. O. Lapotko, E. Y. Lukianova-Hleb, A. A. Oraevsky, “Clusterization of nanoparticles during their interaction with living cells,” Nanomedicine (Lond) 2(2), 241–253 (2007).
[CrossRef] [PubMed]

T. B. Huff, L. Tong, Y. Zhao, M. N. Hansen, J.-X. Cheng, A. Wei, “Hyperthermic effects of gold nanorods on tumor cells,” Nanomedicine (Lond) 2(1), 125–132 (2007).
[CrossRef] [PubMed]

L. Tong, J.-X. Cheng, “Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria,” Nanomedicine (Lond) 4(3), 265–276 (2009).
[CrossRef] [PubMed]

Nanotechnology

B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006).
[CrossRef]

Y. T. Lim, M. Y. Cho, B. S. Choi, Y.-W. Noh, B. H. Chung, “Diagnosis and therapy of macrophage cells using dextran-coated near-infrared responsive hollow-type gold nanoparticles,” Nanotechnology 19(37), 375105 (2008).
[CrossRef] [PubMed]

Nat. Med.

A. C. Li, C. K. Glass, “The macrophage foam cell as a target for therapeutic intervention,” Nat. Med. 8(11), 1235–1242 (2002).
[CrossRef] [PubMed]

Opt. Express

Part. Fibre Toxicol.

C. Mühlfeld, B. Rothen-Rutishauser, D. Vanhecke, F. Blank, P. Gehr, M. Ochs, “Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy,” Part. Fibre Toxicol. 4(1), 11 (2007).
[CrossRef] [PubMed]

Philos. Mag.

L. Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity,” Philos. Mag. 34, 94–98 (1917).

Photochem. Photobiol.

L. Tong, Q. Wei, A. Wei, J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Small

J. R. McCarthy, F. A. Jaffer, R. Weissleder, “A macrophage-targeted theranostic nanoparticle for biomedical applications,” Small 2(8-9), 983–987 (2006).
[CrossRef] [PubMed]

Trends Biotechnol.

D. Pissuwan, S. M. Valenzuela, M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends Biotechnol. 24(2), 62–67 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Microscope setup for cell irradiation with simultaneous imaging and pressure transient measurement.

Fig. 2
Fig. 2

Bac-1 cells incubated with 90 nm gold spheres at 4.5∙109 part/ml and irradiated at 532 nm: (I) before irradiation, (II) with a delay equal to half the bubble lifetime after irradiation with a single laser pulse and after the trypan blue staining procedure. (A) Radiant exposure = 45 mJ/cm2, Δt = 300 ns. Absence of staining after application of trypan blue (III) suggests an intact cell membrane. (B) Radiant exposure = 80 mJ/cm2, Δt = 500 ns. The staining (III) indicates acute membrane damage. (C) Radiant exposure = 330 mJ/cm2, Δt = 190 ns. The cell is destroyed beyond recognition (III). Note that this cell was not stained. The staining procedure washes away the remnants of the cell. Scale bar: 10 μm, applicable to all images.

Fig. 3
Fig. 3

Pressure signal (raw data) recorded during measurements such as the one shown in Fig. 2B, panel II. Pressure signal of one large bubble. The two transients stem from vapor bubble formation and collapse; their relative delay indicating the vapor bubble lifetime is 1.28 μs.

Fig. 4
Fig. 4

Bubble lifetimes in Bac-1 cells incubated with 90nm gold spheres at 0.6 and 4.5∙109 particles/ml as a function of the radiant exposure (532 nm) for two different particle concentrations during incubation as derived from pressure measurements. Dashed lines show the linear fits to the two data sets. Both measurements yield almost the same vapor bubble lifetime of 0.7 µs (dotted line) at the respective damage thresholds (per Table 1, solid vertical lines).

Fig. 5
Fig. 5

Damage threshold in mJ/cm2 as a function of the applied number of pulses for 40, 60 and 90 nm particles. Only the error bar for 40 nm particles is shown for a single pulse for clarity. The omitted error bars are nearly identical.

Fig. 6
Fig. 6

Transmission electron microscopy image of a Bac-1 cell after incubation for 3.5 hours with 90 nm gold spheres at 4.5∙109 particles/ml. A) The particles are accumulated in lysosomes throughout the cell but are not found within the nucleus or in the cytosol. B) Magnification of the upper left lysosomes in figure A.

Fig. 7
Fig. 7

A) Bac-1 cell with 90 nm Au particles after single pulse irradiation with 30 mJ/cm2 at 532 nm; B) the magnified image shows that unlike prior to irradiation (Fig. 6) the lysosomes are mostly destroyed and the particles are more widely distributed in the cytosol.

Tables (1)

Tables Icon

Table 1 Single-pulse staining threshold for samples incubated with different concentrations of 90 nm particles

Metrics