Abstract

We proposed and validated a compensation method that accounts for the optical distortion inherent in measuring displacements on specimens immersed in aqueous solution. A spherically-shaped rubber specimen was mounted and pressurized on a custom apparatus, with the resulting surface displacements recorded using electronic speckle pattern interferometry (ESPI). Point-to-point light direction computation is achieved by a ray-tracing strategy coupled with customized B-spline-based analytical representation of the specimen shape. The compensation method reduced the mean magnitude of the displacement error induced by the optical distortion from 35% to 3%, and ESPI displacement measurement repeatability showed a mean variance of 16 nm at the 95% confidence level for immersed specimens. The ESPI interferometer and numerical data analysis procedure presented herein provide reliable, accurate, and repeatable measurement of sub-micrometer deformations obtained from pressurization tests of spherically-shaped specimens immersed in aqueous salt solution. This method can be used to quantify small deformations in biological tissue samples under load, while maintaining the hydration necessary to ensure accurate material property assessment.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
    [CrossRef]
  2. H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech.42(3), 303–310 (2002).
    [CrossRef]
  3. H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng.39(11), 2915–2921 (2000).
    [CrossRef]
  4. P. Bing, Z. Lu, and H. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng.48(4), 469–477 (2010).
  5. X. Ke, H. W. Schreier, M. A. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements. Part II: experimental validation of uncertainty and bias estimates,” Exp. Mech.51(4), 423–441 (2011).
    [CrossRef]
  6. M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
    [CrossRef] [PubMed]
  7. M. Sjödahl and H. O. Saldner, “Three-dimensional deformation field measurements with simultaneous TV holography and electronic speckle photography,” Appl. Opt.36(16), 3645–3648 (1997).
    [CrossRef] [PubMed]
  8. M. Lehmann, “Decorrelation-induced phase errors in phase-shifting speckle interferometry,” Appl. Opt.36(16), 3657–3667 (1997).
    [CrossRef] [PubMed]
  9. L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng.34(1), 55–65 (2000).
    [CrossRef]
  10. I. G. Mogilner, G. Ruderman, and J. R. Grigera, “Collagen stability, hydration and native state,” J. Mol. Graph. Model.21(3), 209–213 (2002).
    [CrossRef] [PubMed]
  11. D. Shahmirzadi and A. H. Hsieh, “An efficient technique for adjusting and maintaining specific hydration levels in soft biological tissues in vitro,” Med. Eng. Phys.32(7), 795–801 (2010).
    [CrossRef] [PubMed]
  12. J. Watson and J. Kilpatrick, “Optical aberrations in underwater holography and their compensation,” Proc. SPIE1461, 245–253 (1991).
    [CrossRef]
  13. M. A. Haile and P. G. Ifju, “Application of elastic image registration and refraction correction for non-contact underwater strain measurement,” Strain (20 Apr. 2011), doi:.
    [CrossRef]
  14. X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost, “Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects,” J. Strain. Anal. Eng. Design43(8), 689–704 (2008).
    [CrossRef]
  15. J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
    [CrossRef]
  16. R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
    [CrossRef] [PubMed]
  17. P. Picart, J. C. Pascal, and J. M. Breteau, “Systematic errors of phase-shifting speckle interferometry,” Appl. Opt.40(13), 2107–2116 (2001).
    [CrossRef] [PubMed]
  18. J. M. Huntley, “Random phase measurement errors in digital speckle pattern interferometry,” Opt. Lasers Eng.26(2–3), 131–150 (1997).
    [CrossRef]
  19. A. Baldi, F. Bertolino, and F. Ginesu, “On the performance of some unwrapping algorithms,” Opt. Lasers Eng.37(4), 313–330 (2002).
    [CrossRef]
  20. L. Bruno, “Global approach for fitting 2D interferometric data,” Opt. Express15(8), 4835–4847 (2007).
    [CrossRef] [PubMed]
  21. P. D. Lin and T.- Liao, “A new model of binocular stereo coordinate measurement system based on skew ray tracing,” J. Dyn. Syst. Meas. Control126(1), 102–114 (2004).
    [CrossRef]
  22. R. R. Cordero, A. Martinez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun.241(4–6), 279–292 (2004).
    [CrossRef]

2011 (1)

X. Ke, H. W. Schreier, M. A. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements. Part II: experimental validation of uncertainty and bias estimates,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

2010 (2)

P. Bing, Z. Lu, and H. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng.48(4), 469–477 (2010).

D. Shahmirzadi and A. H. Hsieh, “An efficient technique for adjusting and maintaining specific hydration levels in soft biological tissues in vitro,” Med. Eng. Phys.32(7), 795–801 (2010).
[CrossRef] [PubMed]

2009 (3)

M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
[CrossRef] [PubMed]

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

2008 (1)

X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost, “Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects,” J. Strain. Anal. Eng. Design43(8), 689–704 (2008).
[CrossRef]

2007 (2)

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

L. Bruno, “Global approach for fitting 2D interferometric data,” Opt. Express15(8), 4835–4847 (2007).
[CrossRef] [PubMed]

2004 (2)

P. D. Lin and T.- Liao, “A new model of binocular stereo coordinate measurement system based on skew ray tracing,” J. Dyn. Syst. Meas. Control126(1), 102–114 (2004).
[CrossRef]

R. R. Cordero, A. Martinez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun.241(4–6), 279–292 (2004).
[CrossRef]

2002 (3)

A. Baldi, F. Bertolino, and F. Ginesu, “On the performance of some unwrapping algorithms,” Opt. Lasers Eng.37(4), 313–330 (2002).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech.42(3), 303–310 (2002).
[CrossRef]

I. G. Mogilner, G. Ruderman, and J. R. Grigera, “Collagen stability, hydration and native state,” J. Mol. Graph. Model.21(3), 209–213 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (2)

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng.39(11), 2915–2921 (2000).
[CrossRef]

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng.34(1), 55–65 (2000).
[CrossRef]

1997 (3)

1991 (1)

J. Watson and J. Kilpatrick, “Optical aberrations in underwater holography and their compensation,” Proc. SPIE1461, 245–253 (1991).
[CrossRef]

Baldi, A.

A. Baldi, F. Bertolino, and F. Ginesu, “On the performance of some unwrapping algorithms,” Opt. Lasers Eng.37(4), 313–330 (2002).
[CrossRef]

Barak, M.

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

Bertolino, F.

A. Baldi, F. Bertolino, and F. Ginesu, “On the performance of some unwrapping algorithms,” Opt. Lasers Eng.37(4), 313–330 (2002).
[CrossRef]

Bing, P.

P. Bing, Z. Lu, and H. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng.48(4), 469–477 (2010).

Bornert, M.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Bottlang, M.

M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
[CrossRef] [PubMed]

Braasch, J. R.

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng.39(11), 2915–2921 (2000).
[CrossRef]

Brémand, F.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Breteau, J. M.

Bruno, L.

L. Bruno, “Global approach for fitting 2D interferometric data,” Opt. Express15(8), 4835–4847 (2007).
[CrossRef] [PubMed]

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng.34(1), 55–65 (2000).
[CrossRef]

Burgoyne, C. F.

M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
[CrossRef] [PubMed]

Cordero, R. R.

R. R. Cordero, A. Martinez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun.241(4–6), 279–292 (2004).
[CrossRef]

Currey, J. D.

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

Del Pino, G. G.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Doumalin, P.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Downs, J. C.

M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
[CrossRef] [PubMed]

Dupré, J.-C.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Fazzini, M.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Friesem, A. A.

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

Ginesu, F.

A. Baldi, F. Bertolino, and F. Ginesu, “On the performance of some unwrapping algorithms,” Opt. Lasers Eng.37(4), 313–330 (2002).
[CrossRef]

Girard, M. J. A.

M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
[CrossRef] [PubMed]

Gonçalves, E.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Grédiac, M.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Grigera, J. R.

I. G. Mogilner, G. Ruderman, and J. R. Grigera, “Collagen stability, hydration and native state,” J. Mol. Graph. Model.21(3), 209–213 (2002).
[CrossRef] [PubMed]

Haile, M. A.

M. A. Haile and P. G. Ifju, “Application of elastic image registration and refraction correction for non-contact underwater strain measurement,” Strain (20 Apr. 2011), doi:.
[CrossRef]

Hild, F.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Hsieh, A. H.

D. Shahmirzadi and A. H. Hsieh, “An efficient technique for adjusting and maintaining specific hydration levels in soft biological tissues in vitro,” Med. Eng. Phys.32(7), 795–801 (2010).
[CrossRef] [PubMed]

Huntley, J. M.

J. M. Huntley, “Random phase measurement errors in digital speckle pattern interferometry,” Opt. Lasers Eng.26(2–3), 131–150 (1997).
[CrossRef]

Ifju, P. G.

M. A. Haile and P. G. Ifju, “Application of elastic image registration and refraction correction for non-contact underwater strain measurement,” Strain (20 Apr. 2011), doi:.
[CrossRef]

Ke, X.

X. Ke, H. W. Schreier, M. A. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements. Part II: experimental validation of uncertainty and bias estimates,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost, “Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects,” J. Strain. Anal. Eng. Design43(8), 689–704 (2008).
[CrossRef]

Kilpatrick, J.

J. Watson and J. Kilpatrick, “Optical aberrations in underwater holography and their compensation,” Proc. SPIE1461, 245–253 (1991).
[CrossRef]

Lehmann, M.

Lessner, S. M.

X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost, “Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects,” J. Strain. Anal. Eng. Design43(8), 689–704 (2008).
[CrossRef]

Liao, T.-

P. D. Lin and T.- Liao, “A new model of binocular stereo coordinate measurement system based on skew ray tracing,” J. Dyn. Syst. Meas. Control126(1), 102–114 (2004).
[CrossRef]

Lin, P. D.

P. D. Lin and T.- Liao, “A new model of binocular stereo coordinate measurement system based on skew ray tracing,” J. Dyn. Syst. Meas. Control126(1), 102–114 (2004).
[CrossRef]

Lopes, H.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Lu, Z.

P. Bing, Z. Lu, and H. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng.48(4), 469–477 (2010).

Martinez, A.

R. R. Cordero, A. Martinez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun.241(4–6), 279–292 (2004).
[CrossRef]

Mistou, S.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Mogilner, I. G.

I. G. Mogilner, G. Ruderman, and J. R. Grigera, “Collagen stability, hydration and native state,” J. Mol. Graph. Model.21(3), 209–213 (2002).
[CrossRef] [PubMed]

Molimard, J.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Monteiro, J. M.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Orteu, J.-J.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Pagnotta, L.

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng.34(1), 55–65 (2000).
[CrossRef]

Palacios, F.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Pascal, J. C.

Pérez, J. R.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Picart, P.

Poggialini, A.

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng.34(1), 55–65 (2000).
[CrossRef]

Robert, L.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Rodríguez-Vera, R.

R. R. Cordero, A. Martinez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun.241(4–6), 279–292 (2004).
[CrossRef]

Roth, P.

R. R. Cordero, A. Martinez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun.241(4–6), 279–292 (2004).
[CrossRef]

Ruderman, G.

I. G. Mogilner, G. Ruderman, and J. R. Grigera, “Collagen stability, hydration and native state,” J. Mol. Graph. Model.21(3), 209–213 (2002).
[CrossRef] [PubMed]

Saldner, H. O.

Schreier, H. W.

X. Ke, H. W. Schreier, M. A. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements. Part II: experimental validation of uncertainty and bias estimates,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech.42(3), 303–310 (2002).
[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng.39(11), 2915–2921 (2000).
[CrossRef]

Shahar, R.

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

Shahmirzadi, D.

D. Shahmirzadi and A. H. Hsieh, “An efficient technique for adjusting and maintaining specific hydration levels in soft biological tissues in vitro,” Med. Eng. Phys.32(7), 795–801 (2010).
[CrossRef] [PubMed]

Sjödahl, M.

Suh, J.-K. F.

M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
[CrossRef] [PubMed]

Surrel, Y.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Sutton, M. A.

X. Ke, H. W. Schreier, M. A. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements. Part II: experimental validation of uncertainty and bias estimates,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost, “Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects,” J. Strain. Anal. Eng. Design43(8), 689–704 (2008).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech.42(3), 303–310 (2002).
[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng.39(11), 2915–2921 (2000).
[CrossRef]

Vacher, P.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Valin Rivera, J. L.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Vaz, M. A. P.

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

Wang, Y.

X. Ke, H. W. Schreier, M. A. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements. Part II: experimental validation of uncertainty and bias estimates,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Watson, J.

J. Watson and J. Kilpatrick, “Optical aberrations in underwater holography and their compensation,” Proc. SPIE1461, 245–253 (1991).
[CrossRef]

Wattrisse, B.

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

Weiner, S.

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

Xie, H.

P. Bing, Z. Lu, and H. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng.48(4), 469–477 (2010).

Yost, M.

X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost, “Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects,” J. Strain. Anal. Eng. Design43(8), 689–704 (2008).
[CrossRef]

Zaslansky, P.

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

Appl. Opt. (3)

Exp. Mech. (3)

M. Bornert, F. Brémand, P. Doumalin, J.-C. Dupré, M. Fazzini, M. Grédiac, F. Hild, S. Mistou, J. Molimard, J.-J. Orteu, L. Robert, Y. Surrel, P. Vacher, and B. Wattrisse, “Assessment of digital image correlation measurement errors: methodology and results,” Exp. Mech.49(3), 353–370 (2009).
[CrossRef]

H. W. Schreier and M. A. Sutton, “Systematic errors in digital image correlation due to undermatched subset shape functions,” Exp. Mech.42(3), 303–310 (2002).
[CrossRef]

X. Ke, H. W. Schreier, M. A. Sutton, and Y. Wang, “Error assessment in stereo-based deformation measurements. Part II: experimental validation of uncertainty and bias estimates,” Exp. Mech.51(4), 423–441 (2011).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

M. J. A. Girard, J.-K. F. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Scleral biomechanics in the aging monkey eye,” Invest. Ophthalmol. Vis. Sci.50(11), 5226–5237 (2009).
[CrossRef] [PubMed]

J. Biomech. (1)

R. Shahar, P. Zaslansky, M. Barak, A. A. Friesem, J. D. Currey, and S. Weiner, “Anisotropic Poisson’s ratio and compression modulus of cortical bone determined by speckle interferometry,” J. Biomech.40(2), 252–264 (2007).
[CrossRef] [PubMed]

J. Dyn. Syst. Meas. Control (1)

P. D. Lin and T.- Liao, “A new model of binocular stereo coordinate measurement system based on skew ray tracing,” J. Dyn. Syst. Meas. Control126(1), 102–114 (2004).
[CrossRef]

J. Mol. Graph. Model. (1)

I. G. Mogilner, G. Ruderman, and J. R. Grigera, “Collagen stability, hydration and native state,” J. Mol. Graph. Model.21(3), 209–213 (2002).
[CrossRef] [PubMed]

J. Strain. Anal. Eng. Design (1)

X. Ke, M. A. Sutton, S. M. Lessner, and M. Yost, “Robust stereo vision and calibration methodology for accurate three-dimensional digital image correlation measurements on submerged objects,” J. Strain. Anal. Eng. Design43(8), 689–704 (2008).
[CrossRef]

Med. Eng. Phys. (1)

D. Shahmirzadi and A. H. Hsieh, “An efficient technique for adjusting and maintaining specific hydration levels in soft biological tissues in vitro,” Med. Eng. Phys.32(7), 795–801 (2010).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. R. Cordero, A. Martinez, R. Rodríguez-Vera, and P. Roth, “Uncertainty evaluation of displacements measured by electronic speckle-pattern interferometry,” Opt. Commun.241(4–6), 279–292 (2004).
[CrossRef]

Opt. Eng. (1)

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng.39(11), 2915–2921 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (5)

P. Bing, Z. Lu, and H. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng.48(4), 469–477 (2010).

J. M. Huntley, “Random phase measurement errors in digital speckle pattern interferometry,” Opt. Lasers Eng.26(2–3), 131–150 (1997).
[CrossRef]

A. Baldi, F. Bertolino, and F. Ginesu, “On the performance of some unwrapping algorithms,” Opt. Lasers Eng.37(4), 313–330 (2002).
[CrossRef]

J. L. Valin Rivera, J. M. Monteiro, H. Lopes, M. A. P. Vaz, F. Palacios, E. Gonçalves, G. G. Del Pino, and J. R. Pérez, “Proposal for underwater structural analysis using the techniques of ESPI and digital holography,” Opt. Lasers Eng.47(11), 1139–1144 (2009).
[CrossRef]

L. Bruno, L. Pagnotta, and A. Poggialini, “Laser speckle decorrelation in NDT,” Opt. Lasers Eng.34(1), 55–65 (2000).
[CrossRef]

Proc. SPIE (1)

J. Watson and J. Kilpatrick, “Optical aberrations in underwater holography and their compensation,” Proc. SPIE1461, 245–253 (1991).
[CrossRef]

Strain (1)

M. A. Haile and P. G. Ifju, “Application of elastic image registration and refraction correction for non-contact underwater strain measurement,” Strain (20 Apr. 2011), doi:.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry for determining the sensitivity vector K ˜ =( K ^ i K ^ o ) when the specimen is illuminated by a spherical wavefront generated by the light source and observed at the view point. Refraction implies the bending of the light when passing from air to phosphate-buffered saline solution (PBS). Dimensions are in mm and are not to scale.

Fig. 2
Fig. 2

The wrapped fringes recorded by the ESPI for a pressure step of 0.5 mmHg in both air and PBS. Each image represents the information recorded for one of the four lasers of the ESPI. The images in the top row were obtained by performing the test in PBS, while the 4 images in the bottom row are recorded for the identical test performed in air. Note that the speckle data for these identical deformation tests are significantly different due to the presence of different optical media.

Fig. 3
Fig. 3

Pressurization apparatus for mechanical inflation test of spherically-shaped specimens. Reproduced with permission from Girard and colleagues [6].

Fig. 4
Fig. 4

Cubic functions (Nn) of the B-spline fitting system defined in the radial direction (r).

Fig. 5
Fig. 5

Point-to-point comparison and difference maps for the displacement magnitude and displacement vector angle for different tests in air (repeatability) and different methods of compensation for optical distortion due to in PBS (compensation).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ= 2π λ ( K ^ i K ^ o ) d ˜ = 2π λ (K d x x +K d y y +K d z z ),
{ d x d y d z }= λ 2π [ K ˜ ] { ϕ 1 ϕ 2 ϕ 3 ϕ 4 },
λ 2 λ 1 = n 1 n 2 = sin θ 2 sin θ 1 ,
MeanVariance= s=1 s.points l=1 l.steps (| d ˜ l s || d s ¯ |) 2 l.steps s.points ,
F(r,θ)= w 1 N 1 (r)++ w n N n (r) +[ w n+1 N 1 (r)++ w 2n N n (r)]cosθ+[ w 2n+1 N 1 (r)++ w 3n N n (r)]sinθ+ +[ w n(2h1)+1 N 1 (r)++ w n(2h1)+n N n (r)]coshθ +[ w n(2h)+1 N 1 (r)++ w n(2h)+n N n (r)]sinhθ,
[ N 1 ( r 1 ) N n ( r 1 ) N 1 ( r 1 )cos θ 1 N n ( r 1 )cos θ 1 N 1 ( r 1 )sin θ 1 N n ( r 1 )sin θ 1 N 1 ( r 1 )cosh θ 1 N n ( r 1 )cosh θ 1 N 1 ( r 1 )sinh θ 1 N n ( r 1 )sinh θ 1 N 1 ( r m ) N n ( r m ) N 1 ( r m )cos θ m N n ( r m )cos θ m N 1 ( r m )sin θ m N n ( r m )sin θ m N 1 ( r m )cosh θ m N n ( r m )cosh θ m N 1 ( r m )sinh θ m N n ( r m )sinh θ m ]

Metrics