Abstract

We report results to verify a theoretical framework to analyze the 3D depth-wise structural organization of collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography. Apparent birefringence data obtained from multi-angle measurements using a time domain polarization-sensitive optical coherence tomography system has been compared with simulated data based on the extended Jones matrix calculus. Experimental data has been shown to agree with the lamellar model previously proposed for the cartilage microstructure based on scanning electron microscopy data. This tool could have potential application in mapping the collagen structural orientation information of cartilage non-invasively during arthroscopy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
    [PubMed]
  2. G. Spahn, H. M. Klinger, and G. O. Hofmann, “How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons,” Arch. Orthop. Trauma Surg.129(8), 1117–1121 (2009).
    [CrossRef] [PubMed]
  3. C. Peterfy and M. Kothari, “Imaging osteoarthritis: magnetic resonance imaging versus x-ray,” Curr. Rheumatol. Rep.8(1), 16–21 (2006).
    [CrossRef] [PubMed]
  4. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
    [CrossRef]
  5. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9(6), 903–908 (1992).
    [CrossRef]
  6. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997).
    [CrossRef] [PubMed]
  7. N. Ugryumova, S. V. Gangnus, and S. J. Matcher, “Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography,” Opt. Lett.31(15), 2305–2307 (2006).
    [CrossRef] [PubMed]
  8. P. Yeh, “Extended Jones matrix-method,” J. Opt. Soc. Am.72(4), 507–513 (1982).
    [CrossRef]
  9. C. Gu and P. Yeh, “Extended Jones matrix method. II,” J. Opt. Soc. Am. A10(5), 966–973 (1993).
    [CrossRef]
  10. S. Gangnus, S. J. Matcher, and I. V. Meglinsky, “Monte Carlo modeling of polarized light propagation in a biological tissue,” Laser Phys.14, 886–891 (2002).
  11. F. Fanjul-Vélez and J. L. Arce-Diego, “Polarimetry of birefringent biological tissues with arbitrary fibril orientation and variable incidence angle,” Opt. Lett.35(8), 1163–1165 (2010).
    [CrossRef] [PubMed]
  12. A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991).
    [PubMed]
  13. V. C. Mow and A. Ratcliffe, “Structure and function of articular cartilage and meniscus,” in Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds. (Lippincott-Raven, New York, 1997), pp. 113–177.
  14. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997).
    [CrossRef] [PubMed]
  15. J. W. Jacobs and S. J. Matcher, “Polarization sensitive optical coherence tomography in equine bone,” Proc. SPIE7166, 716608, 716608-10 (2009).
    [CrossRef]
  16. P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
    [CrossRef]
  17. S. L. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett.27(2), 101–103 (2002).
    [CrossRef] [PubMed]
  18. J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
    [CrossRef] [PubMed]
  19. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002).
    [CrossRef] [PubMed]
  20. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt.37(25), 6026–6036 (1998).
    [CrossRef] [PubMed]
  21. D. M. Olsson and L. S. Nelson, “Nelder-Mead simplex procedure for function minimization,” Technometrics17(1), 45–51 (1975).
    [CrossRef]
  22. B. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd ed. (Chapman & Hall/CRC, Florida, 2001).

2010

F. Fanjul-Vélez and J. L. Arce-Diego, “Polarimetry of birefringent biological tissues with arbitrary fibril orientation and variable incidence angle,” Opt. Lett.35(8), 1163–1165 (2010).
[CrossRef] [PubMed]

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

2009

J. W. Jacobs and S. J. Matcher, “Polarization sensitive optical coherence tomography in equine bone,” Proc. SPIE7166, 716608, 716608-10 (2009).
[CrossRef]

G. Spahn, H. M. Klinger, and G. O. Hofmann, “How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons,” Arch. Orthop. Trauma Surg.129(8), 1117–1121 (2009).
[CrossRef] [PubMed]

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

2007

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

2006

2005

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

2002

S. L. Jiao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett.27(2), 101–103 (2002).
[CrossRef] [PubMed]

S. Gangnus, S. J. Matcher, and I. V. Meglinsky, “Monte Carlo modeling of polarized light propagation in a biological tissue,” Laser Phys.14, 886–891 (2002).

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002).
[CrossRef] [PubMed]

1998

1997

1993

1992

1991

A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991).
[PubMed]

1982

1975

D. M. Olsson and L. S. Nelson, “Nelder-Mead simplex procedure for function minimization,” Technometrics17(1), 45–51 (1975).
[CrossRef]

Arce-Diego, J. L.

Archer, C. W.

A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991).
[PubMed]

Bentley, G.

A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991).
[PubMed]

Blunn, G. W.

A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991).
[PubMed]

Bonesi, M.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Childs, D. T. D.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Colston, B. W.

Da Silva, L. B.

de Boer, J. F.

Everett, M. J.

Fanjul-Vélez, F.

Fujimoto, J. G.

Gangnus, S.

S. Gangnus, S. J. Matcher, and I. V. Meglinsky, “Monte Carlo modeling of polarized light propagation in a biological tissue,” Laser Phys.14, 886–891 (2002).

Gangnus, S. V.

Greenwood, P. D. L.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Groom, K. M.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Gu, C.

Halmesmaki, E.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Hee, M. R.

Helminen, H. J.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Hofmann, G. O.

G. Spahn, H. M. Klinger, and G. O. Hofmann, “How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons,” Arch. Orthop. Trauma Surg.129(8), 1117–1121 (2009).
[CrossRef] [PubMed]

Hogg, R. A.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Hopkinson, M.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Huang, D.

Hugues, M.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Hyttinen, M. M.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Jacobs, J. W.

J. W. Jacobs and S. J. Matcher, “Polarization sensitive optical coherence tomography in equine bone,” Proc. SPIE7166, 716608, 716608-10 (2009).
[CrossRef]

Jeffery, A. K.

A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991).
[PubMed]

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002).
[CrossRef] [PubMed]

Jiao, S. L.

Jurvelin, J. S.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

Kennedy, K.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Kiviranta, I.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Kiviranta, P.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

Klinger, H. M.

G. Spahn, H. M. Klinger, and G. O. Hofmann, “How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons,” Arch. Orthop. Trauma Surg.129(8), 1117–1121 (2009).
[CrossRef] [PubMed]

Kothari, M.

C. Peterfy and M. Kothari, “Imaging osteoarthritis: magnetic resonance imaging versus x-ray,” Curr. Rheumatol. Rep.8(1), 16–21 (2006).
[CrossRef] [PubMed]

Krstajic, N.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Laasanen, M. S.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

MacNeil, S.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Maitland, D. J.

Matcher, S. J.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

J. W. Jacobs and S. J. Matcher, “Polarization sensitive optical coherence tomography in equine bone,” Proc. SPIE7166, 716608, 716608-10 (2009).
[CrossRef]

N. Ugryumova, S. V. Gangnus, and S. J. Matcher, “Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography,” Opt. Lett.31(15), 2305–2307 (2006).
[CrossRef] [PubMed]

S. Gangnus, S. J. Matcher, and I. V. Meglinsky, “Monte Carlo modeling of polarized light propagation in a biological tissue,” Laser Phys.14, 886–891 (2002).

Meglinsky, I. V.

S. Gangnus, S. J. Matcher, and I. V. Meglinsky, “Monte Carlo modeling of polarized light propagation in a biological tissue,” Laser Phys.14, 886–891 (2002).

Milner, T. E.

Nelson, J. S.

Nelson, L. S.

D. M. Olsson and L. S. Nelson, “Nelder-Mead simplex procedure for function minimization,” Technometrics17(1), 45–51 (1975).
[CrossRef]

Nieminen, H. J.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

Nieminen, M. T.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

Nissi, M. J.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

Olsson, D. M.

D. M. Olsson and L. S. Nelson, “Nelder-Mead simplex procedure for function minimization,” Technometrics17(1), 45–51 (1975).
[CrossRef]

Peterfy, C.

C. Peterfy and M. Kothari, “Imaging osteoarthritis: magnetic resonance imaging versus x-ray,” Curr. Rheumatol. Rep.8(1), 16–21 (2006).
[CrossRef] [PubMed]

Rieppo, J.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Ruotsalainen, H.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Saarakkala, S.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

Schoenenberger, K.

Smallwood, R.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Smith, L. E.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

Spahn, G.

G. Spahn, H. M. Klinger, and G. O. Hofmann, “How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons,” Arch. Orthop. Trauma Surg.129(8), 1117–1121 (2009).
[CrossRef] [PubMed]

Swanson, E. A.

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Töyräs, J.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

Ugryumova, N.

van Gemert, M. J. C.

Vasara, A.

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Wang, L. V.

Wang, R. K.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Yeh, P.

Appl. Opt.

Arch. Orthop. Trauma Surg.

G. Spahn, H. M. Klinger, and G. O. Hofmann, “How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons,” Arch. Orthop. Trauma Surg.129(8), 1117–1121 (2009).
[CrossRef] [PubMed]

Curr. Rheumatol. Rep.

C. Peterfy and M. Kothari, “Imaging osteoarthritis: magnetic resonance imaging versus x-ray,” Curr. Rheumatol. Rep.8(1), 16–21 (2006).
[CrossRef] [PubMed]

Eur. Cell. Mater.

P. Kiviranta, J. Töyräs, M. T. Nieminen, M. S. Laasanen, S. Saarakkala, H. J. Nieminen, M. J. Nissi, and J. S. Jurvelin, “Comparison of novel clinically applicable methodology for sensitive diagnostics of cartilage degeneration,” Eur. Cell. Mater.13, 46–55, discussion 55 (2007).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

P. D. L. Greenwood, D. T. D. Childs, K. Kennedy, K. M. Groom, M. Hugues, M. Hopkinson, R. A. Hogg, N. Krstajic, L. E. Smith, S. J. Matcher, M. Bonesi, S. MacNeil, and R. Smallwood, “Quantum dot superluminescent diodes for optical coherence tomography: device engineering,” IEEE J. Sel. Top. Quantum Electron.16(4), 1015–1022 (2010).
[CrossRef]

J. Biomed. Opt.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002).
[CrossRef] [PubMed]

J. Bone Joint Surg. Br.

A. K. Jeffery, G. W. Blunn, C. W. Archer, and G. Bentley, “Three-dimensional collagen architecture in bovine articular cartilage,” J. Bone Joint Surg. Br.73(5), 795–801 (1991).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Laser Phys.

S. Gangnus, S. J. Matcher, and I. V. Meglinsky, “Monte Carlo modeling of polarized light propagation in a biological tissue,” Laser Phys.14, 886–891 (2002).

Opt. Lett.

Osteoarthritis Cartilage

J. Rieppo, M. M. Hyttinen, E. Halmesmaki, H. Ruotsalainen, A. Vasara, I. Kiviranta, J. S. Jurvelin, and H. J. Helminen, “Changes in spatial collagen content and collagen network architecture in porcine articular cartilage during growth and maturation,” Osteoarthritis Cartilage17(4), 448–455 (2009).
[CrossRef] [PubMed]

Proc. SPIE

J. W. Jacobs and S. J. Matcher, “Polarization sensitive optical coherence tomography in equine bone,” Proc. SPIE7166, 716608, 716608-10 (2009).
[CrossRef]

Technometrics

D. M. Olsson and L. S. Nelson, “Nelder-Mead simplex procedure for function minimization,” Technometrics17(1), 45–51 (1975).
[CrossRef]

Other

B. Manly, Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd ed. (Chapman & Hall/CRC, Florida, 2001).

V. C. Mow and A. Ratcliffe, “Structure and function of articular cartilage and meniscus,” in Basic Orthopaedic Biomechanics, V. C. Mow and W. C. Hayes, eds. (Lippincott-Raven, New York, 1997), pp. 113–177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A schematic showing the EJMC approach to modeling the zonal layered structure of articular cartilage. Here ϕc and θc give the azimuthal and the polar angle of the collagen fiber direction, i.e., the optic axis. The incident angle θinc is varied with respect to the surface normal of the tissue over two orthogonal planes to obtain the multi-angle PS-OCT data. 1(b) A schematic of the imaging procedure of multi-angle PS-OCT study of articular cartilage over two orthogonal planes.

Fig. 2
Fig. 2

(a) A schematic of the bulk-optics TD-PS-OCT system used to carry out the study; QWP, quarter wave plate, BS, beam splitter, PBS, polarizing beam splitter, P, polarizer. (b) A schematic of the cartilage zonal layered structure and the layer thickness used for the EJMC study. Also shown are the orientations of the polar angle of the collagen fast axis varying from 90° in the superficial zone to gradually becoming 0° in the radial zone.

Fig. 3
Fig. 3

(a)-(e) Depth-dependent retardance profiles obtained from PS-OCT measurements (dots) compared with those obtained from EJMC simulation results (line + star) over multiple angles of illumination in sagittal and coronal planes of the bovine cartilage sample using manual fit.

Fig. 4
Fig. 4

(a)-(e) Depth-dependent retardance profiles obtained from PS-OCT measurements (dots) compared with those obtained from EJMC simulation results (line + star) over multiple angles of illumination in sagittal and coronal planes of the bovine cartilage sample based on parameters obtained from ‘fminsearch’ optimizer and bootstrap Monte Carlo method.

Tables (1)

Tables Icon

Table 1 List of all the parameters used in the ‘fminsearch’ optimizer for obtaining a good fit of the depth-dependent retardance profiles obtained from angle-resolved PS-OCT imaging and those obtained from EJMC simulationa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ(z)=arctan( I V (z) I H (z) )
( A H (z) A V (z) )=R(45°)QWPR(45°) J sample 1 2 ( 1 i )
J sample = T o P T P T i
P= i=m 1 R( ψ i )( e i k o z i d i 0 0 e i k e z i d i )R( ψ i )
δ(z)= tan 1 ( A V (z) A H (z) )
δ(z)= tan 1 ( [ A V (z) 2 exp(2 μ t z)+ σ 2 ] [ A H (z) 2 exp(2 μ t z)+ σ 2 ] )
χ 2 = j=1 5 i=1 n [ δ j,measured ( z i ) δ j,modelled ( z i ) ] 2
θ ctrans ( z )=a z 2 +bz+c

Metrics