Abstract

Imaging single fluorescent proteins in a live cell is a challenging task because of the strong cellular autofluorescence. Autofluorescence can be minimized by reducing fluorescence excitation volume. Total internal reflection fluorescence (TIRF) microscopy has been routinely used to reduce excitation volume and detect single protein molecules in or close to cell membrane. However, the limited penetration depth of evanescent field excludes imaging of single fluorescent proteins that reside deep inside a eukaryotic cell. Here we report detection of single fluorescent proteins inside eukaryotic cells by two-photon fluorescence (TPF) microscopy. TPF has an excitation volume less than 0.1 femtoliter (fL). Cell autofluorescence under TPF is low and thus enables us to detect single enhanced green fluorescent proteins (EGFP) and single monomeric teal fluorescent proteins (mTFP1.0) that reside several microns deep inside the cell. Discrete stepwise photobleaching of TPF was observed for both proteins inside the cell. Quantitative analysis of single-molecule fluorescence trajectories show that mTFP1.0 is about twofold brighter than EGFP, while its fluorescence on-time before bleaching is about 10 fold shorter. These findings demonstrate the sensitivity of TPF for imaging of eukaryotic cells at single-molecule level and will be useful for measurement of protein stoichiometry inside the cell.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Single-molecule detection using continuous wave excitation of two-photon fluorescence

Ximiao Hou and Wei Cheng
Opt. Lett. 36(16) 3185-3187 (2011)

Multicolour single molecule imaging on cells using a supercontinuum source

Stephen E. D. Webb, Laura Zanetti-Domingues, Benjamin C. Coles, Daniel J. Rolfe, Richard J. Wareham, and Marisa L. Martin-Fernandez
Biomed. Opt. Express 3(3) 400-406 (2012)

Multidimensional single-molecule imaging in live cells using total-internal-reflection fluorescence microscopy

S. E. D. Webb, S. R. Needham, S. K. Roberts, and M. L. Martin-Fernandez
Opt. Lett. 31(14) 2157-2159 (2006)

References

  • View by:
  • |
  • |
  • |

  1. G. W. Li and X. S. Xie, “Central dogma at the single-molecule level in living cells,” Nature 475(7356), 308–315 (2011).
    [Crossref] [PubMed]
  2. T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
    [Crossref] [PubMed]
  3. E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 349–369 (2007).
    [Crossref] [PubMed]
  4. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
    [Crossref] [PubMed]
  5. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
    [Crossref] [PubMed]
  6. J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
    [Crossref] [PubMed]
  7. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [Crossref] [PubMed]
  8. F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
    [Crossref] [PubMed]
  9. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  10. E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997).
    [Crossref]
  11. J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
    [Crossref] [PubMed]
  12. P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
    [Crossref] [PubMed]
  13. W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
    [Crossref] [PubMed]
  14. M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
    [Crossref] [PubMed]
  15. M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound proteins,” Nat. Methods 4(4), 319–321 (2007).
    [PubMed]
  16. S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol. 15(1), 106–108 (2008).
    [Crossref] [PubMed]
  17. W. Kaiser and C. G. B. Garrett, “2-Photon excitation in Caf2–Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
    [Crossref]
  18. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  19. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
    [Crossref] [PubMed]
  20. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
    [Crossref] [PubMed]
  21. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  22. M. D. Cahalan and I. Parker, “Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs,” Annu. Rev. Immunol. 26(1), 585–626 (2008).
    [Crossref] [PubMed]
  23. P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
    [Crossref] [PubMed]
  24. D. R. Sandison, R. M. Williams, K. S. Wells, J. Strickler, and W. W. Webb, “Quantitative fluorescence confocal laser scanning microscopy (CLSM),” in Handbook Of Biological Confocal Microscopy, J. Pawley, ed. (Springer, 1995), Chap. 3, pp. 39–52.
  25. D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9(2), 66–69 (1999).
    [Crossref] [PubMed]
  26. X. Hou and W. Cheng, “Single-molecule detection using continuous wave excitation of two-photon fluorescence,” Opt. Lett. 36(16), 3185–3187 (2011).
    [Crossref] [PubMed]
  27. S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
    [PubMed]
  28. E. Schaeffer, R. Geleziunas, and W. C. Greene, “Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions,” J. Virol. 75(6), 2993–3000 (2001).
    [Crossref] [PubMed]
  29. W. Cheng, X. Hou, and F. Ye, “Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping,” Opt. Lett. 35(17), 2988–2990 (2010).
    [Crossref] [PubMed]
  30. J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
    [Crossref] [PubMed]
  31. N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
    [Crossref] [PubMed]
  32. H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science 282(5395), 1877–1882 (1998).
    [Crossref] [PubMed]
  33. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
    [Crossref] [PubMed]
  34. N. J. Carter and R. A. Cross, “Mechanics of the kinesin step,” Nature 435(7040), 308–312 (2005).
    [Crossref] [PubMed]
  35. P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
    [Crossref]
  36. M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
    [Crossref] [PubMed]
  37. E. J. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A 103(49), 10553–10560 (1999).
    [Crossref]
  38. M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
    [Crossref] [PubMed]
  39. H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J. 400(3), 531–540 (2006).
    [Crossref] [PubMed]
  40. S. W. Hell, M. Booth, S. Wilms, C. M. Schnetter, A. K. Kirsch, D. J. Arndt-Jovin, and T. M. Jovin, “Two-photon near- and far-field fluorescence microscopy with continuous-wave excitation,” Opt. Lett. 23(15), 1238–1240 (1998).
    [Crossref] [PubMed]

2011 (5)

G. W. Li and X. S. Xie, “Central dogma at the single-molecule level in living cells,” Nature 475(7356), 308–315 (2011).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

X. Hou and W. Cheng, “Single-molecule detection using continuous wave excitation of two-photon fluorescence,” Opt. Lett. 36(16), 3185–3187 (2011).
[Crossref] [PubMed]

2010 (3)

W. Cheng, X. Hou, and F. Ye, “Use of tapered amplifier diode laser for biological-friendly high-resolution optical trapping,” Opt. Lett. 35(17), 2988–2990 (2010).
[Crossref] [PubMed]

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[Crossref] [PubMed]

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

2009 (2)

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

2008 (4)

M. D. Cahalan and I. Parker, “Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs,” Annu. Rev. Immunol. 26(1), 585–626 (2008).
[Crossref] [PubMed]

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[Crossref] [PubMed]

S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol. 15(1), 106–108 (2008).
[Crossref] [PubMed]

2007 (2)

M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound proteins,” Nat. Methods 4(4), 319–321 (2007).
[PubMed]

E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 349–369 (2007).
[Crossref] [PubMed]

2006 (3)

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J. 400(3), 531–540 (2006).
[Crossref] [PubMed]

2005 (4)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

N. J. Carter and R. A. Cross, “Mechanics of the kinesin step,” Nature 435(7040), 308–312 (2005).
[Crossref] [PubMed]

P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
[Crossref]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2002 (1)

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

2001 (2)

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[Crossref] [PubMed]

E. Schaeffer, R. Geleziunas, and W. C. Greene, “Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions,” J. Virol. 75(6), 2993–3000 (2001).
[Crossref] [PubMed]

2000 (1)

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

1999 (4)

D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9(2), 66–69 (1999).
[Crossref] [PubMed]

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

E. J. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A 103(49), 10553–10560 (1999).
[Crossref]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

1998 (2)

1997 (1)

E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997).
[Crossref]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1984 (2)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

1961 (1)

W. Kaiser and C. G. B. Garrett, “2-Photon excitation in Caf2–Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

Aathavan, K.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Ai, H. W.

H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J. 400(3), 531–540 (2006).
[Crossref] [PubMed]

Alexander, J. K.

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

Anderson, D. L.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Armitage, J. P.

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

Arndt-Jovin, D. J.

Axelrod, D.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Babcock, H. P.

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

Bai, F.

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

Bavister, B. D.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Bell, S. C.

S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol. 15(1), 106–108 (2008).
[Crossref] [PubMed]

Berland, K. M.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Berry, R. M.

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Billinton, N.

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[Crossref] [PubMed]

Booth, M.

Brasselet, S.

E. J. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A 103(49), 10553–10560 (1999).
[Crossref]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Cahalan, M. D.

M. D. Cahalan and I. Parker, “Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs,” Annu. Rev. Immunol. 26(1), 585–626 (2008).
[Crossref] [PubMed]

Campbell, R. E.

H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J. 400(3), 531–540 (2006).
[Crossref] [PubMed]

Carter, N. J.

N. J. Carter and R. A. Cross, “Mechanics of the kinesin step,” Nature 435(7040), 308–312 (2005).
[Crossref] [PubMed]

Cella Zanacchi, F.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

Chandler, J. H.

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Chen, L.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Chen, Y.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Cheng, W.

Chu, S.

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

Cohen, P. S.

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

Cross, R. A.

N. J. Carter and R. A. Cross, “Mechanics of the kinesin step,” Nature 435(7040), 308–312 (2005).
[Crossref] [PubMed]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Deberg, H. A.

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

Del Bue, A.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Diaspro, A.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

Dong, C. Y.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Drobizhev, M.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[Crossref] [PubMed]

Faretta, M.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

Forstner, M. B.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[Crossref] [PubMed]

Fromm, D. P.

P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
[Crossref]

Furia, L.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Garrett, C. G. B.

W. Kaiser and C. G. B. Garrett, “2-Photon excitation in Caf2–Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

Gauss, G. H.

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

Ge, P.

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

Geleziunas, R.

E. Schaeffer, R. Geleziunas, and W. C. Greene, “Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions,” J. Virol. 75(6), 2993–3000 (2001).
[Crossref] [PubMed]

Glader, B. E.

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

Green, W. N.

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

Greene, W. C.

E. Schaeffer, R. Geleziunas, and W. C. Greene, “Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions,” J. Virol. 75(6), 2993–3000 (2001).
[Crossref] [PubMed]

Grimes, S.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Groves, J. T.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[Crossref] [PubMed]

Ha, T.

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

Hell, S. W.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Henderson, J. N.

H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J. 400(3), 531–540 (2006).
[Crossref] [PubMed]

Hille, B.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Holtom, G. R.

E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997).
[Crossref]

Hou, X.

Hughes, T. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[Crossref] [PubMed]

Isacoff, E. Y.

S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol. 15(1), 106–108 (2008).
[Crossref] [PubMed]

M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound proteins,” Nat. Methods 4(4), 319–321 (2007).
[PubMed]

Jardine, P. J.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Jeyifous, O.

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

Ji, W.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Jovin, T. M.

Kaiser, W.

W. Kaiser and C. G. B. Garrett, “2-Photon excitation in Caf2–Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

Kirsch, A. K.

Knight, A. W.

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[Crossref] [PubMed]

Kohout, S. C.

S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol. 15(1), 106–108 (2008).
[Crossref] [PubMed]

Kubitscheck, U.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[Crossref] [PubMed]

Lavagnino, Z.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

Leake, M. C.

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

Li, G. W.

G. W. Li and X. S. Xie, “Central dogma at the single-molecule level in living cells,” Nature 475(7356), 308–315 (2011).
[Crossref] [PubMed]

Li, Z.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Link, M. P.

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

Liu, L.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Lohman, T. M.

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

Lu, H. P.

H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science 282(5395), 1877–1882 (1998).
[Crossref] [PubMed]

Lu, J.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Makarov, N. S.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[Crossref] [PubMed]

Masters, B. R.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Moerner, W. E.

P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
[Crossref]

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

E. J. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A 103(49), 10553–10560 (1999).
[Crossref]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

Novotny, L.

E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997).
[Crossref]

Orrit, M.

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

Parker, I.

M. D. Cahalan and I. Parker, “Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs,” Annu. Rev. Immunol. 26(1), 585–626 (2008).
[Crossref] [PubMed]

Parthasarathy, R.

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[Crossref] [PubMed]

Perrone Donnorso, M.

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

Peterman, E. J.

E. J. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A 103(49), 10553–10560 (1999).
[Crossref]

Piston, D. W.

D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9(2), 66–69 (1999).
[Crossref] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Rasnik, I.

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

Rebane, A.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[Crossref] [PubMed]

Remington, S. J.

H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J. 400(3), 531–540 (2006).
[Crossref] [PubMed]

Ritter, J. G.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[Crossref] [PubMed]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997).
[Crossref]

Schaeffer, E.

E. Schaeffer, R. Geleziunas, and W. C. Greene, “Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions,” J. Virol. 75(6), 2993–3000 (2001).
[Crossref] [PubMed]

Schnetter, C. M.

Schuck, P. J.

P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
[Crossref]

Selvin, P. R.

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 349–369 (2007).
[Crossref] [PubMed]

Shaner, N. C.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

Shatsky, M.

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

Siebrasse, J. P.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[Crossref] [PubMed]

Simonson, P. D.

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

Smith, S. D.

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

So, P. T.

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

Squirrell, J. M.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Steinbach, P. A.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Tillo, S.

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[Crossref] [PubMed]

Tillo, S. E.

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Toprak, E.

E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 349–369 (2007).
[Crossref] [PubMed]

Tsien, R. Y.

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

Twieg, R. J.

P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
[Crossref]

Ulbrich, M. H.

S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol. 15(1), 106–108 (2008).
[Crossref] [PubMed]

M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound proteins,” Nat. Methods 4(4), 319–321 (2007).
[PubMed]

Veenendaal, A.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[Crossref] [PubMed]

Veith, R.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[Crossref] [PubMed]

Wadhams, G. H.

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

Warnke, R.

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

White, J. G.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Willets, K. A.

P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wilms, S.

Wokosin, D. L.

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Xie, X. S.

G. W. Li and X. S. Xie, “Central dogma at the single-molecule level in living cells,” Nature 475(7356), 308–315 (2011).
[Crossref] [PubMed]

H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science 282(5395), 1877–1882 (1998).
[Crossref] [PubMed]

E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997).
[Crossref]

Xu, P.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Xu, T.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Xun, L.

H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science 282(5395), 1877–1882 (1998).
[Crossref] [PubMed]

Yasuda, R.

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Ye, F.

Zhan, Y.

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Anal. Biochem. (1)

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (2)

P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng. 2(1), 399–429 (2000).
[Crossref] [PubMed]

J. T. Groves, R. Parthasarathy, and M. B. Forstner, “Fluorescence imaging of membrane dynamics,” Annu. Rev. Biomed. Eng. 10(1), 311–338 (2008).
[Crossref] [PubMed]

Annu. Rev. Biophys. Bioeng. (1)

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 349–369 (2007).
[Crossref] [PubMed]

Annu. Rev. Immunol. (1)

M. D. Cahalan and I. Parker, “Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs,” Annu. Rev. Immunol. 26(1), 585–626 (2008).
[Crossref] [PubMed]

Biochem. J. (1)

H. W. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, “Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging,” Biochem. J. 400(3), 531–540 (2006).
[Crossref] [PubMed]

Biophys. J. (1)

P. D. Simonson, H. A. Deberg, P. Ge, J. K. Alexander, O. Jeyifous, W. N. Green, and P. R. Selvin, “Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios,” Biophys. J. 99(10), L81–L83 (2010).
[Crossref] [PubMed]

Cancer Res. (1)

S. D. Smith, M. Shatsky, P. S. Cohen, R. Warnke, M. P. Link, and B. E. Glader, “Monoclonal antibody and enzymatic profiles of human malignant T-lymphoid cells and derived cell lines,” Cancer Res. 44(12 Pt 1), 5657–5660 (1984).
[PubMed]

Chem. Phys. (1)

P. J. Schuck, K. A. Willets, D. P. Fromm, R. J. Twieg, and W. E. Moerner, “A novel fluorophore for two-photon-excited single-molecule fluorescence,” Chem. Phys. 318(1-2), 7–11 (2005).
[Crossref]

J. Phys. Chem. A (2)

E. J. Peterman, S. Brasselet, and W. E. Moerner, “The fluorescence dynamics of single molecules of green fluorescent protein,” J. Phys. Chem. A 103(49), 10553–10560 (1999).
[Crossref]

E. J. Sánchez, L. Novotny, G. R. Holtom, and X. S. Xie, “Room-temperature fluorescence imaging and spectroscopy of single molecules by two-photon excitation,” J. Phys. Chem. A 101(38), 7019–7023 (1997).
[Crossref]

J. Phys. Chem. B (1)

M. Drobizhev, S. Tillo, N. S. Makarov, T. E. Hughes, and A. Rebane, “Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins,” J. Phys. Chem. B 113(4), 855–859 (2009).
[Crossref] [PubMed]

J. Virol. (1)

E. Schaeffer, R. Geleziunas, and W. C. Greene, “Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions,” J. Virol. 75(6), 2993–3000 (2001).
[Crossref] [PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999).
[Crossref] [PubMed]

Nat. Methods (6)

M. H. Ulbrich and E. Y. Isacoff, “Subunit counting in membrane-bound proteins,” Nat. Methods 4(4), 319–321 (2007).
[PubMed]

N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, “A guide to choosing fluorescent proteins,” Nat. Methods 2(12), 905–909 (2005).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

F. Cella Zanacchi, Z. Lavagnino, M. Perrone Donnorso, A. Del Bue, L. Furia, M. Faretta, and A. Diaspro, “Live-cell 3D super-resolution imaging in thick biological samples,” Nat. Methods 8(12), 1047–1049 (2011).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

M. Drobizhev, N. S. Makarov, S. E. Tillo, T. E. Hughes, and A. Rebane, “Two-photon absorption properties of fluorescent proteins,” Nat. Methods 8(5), 393–399 (2011).
[Crossref] [PubMed]

Nat. Struct. Mol. Biol. (1)

S. C. Kohout, M. H. Ulbrich, S. C. Bell, and E. Y. Isacoff, “Subunit organization and functional transitions in Ci-VSP,” Nat. Struct. Mol. Biol. 15(1), 106–108 (2008).
[Crossref] [PubMed]

Nature (5)

M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry, and J. P. Armitage, “Stoichiometry and turnover in single, functioning membrane protein complexes,” Nature 443(7109), 355–358 (2006).
[Crossref] [PubMed]

G. W. Li and X. S. Xie, “Central dogma at the single-molecule level in living cells,” Nature 475(7356), 308–315 (2011).
[Crossref] [PubMed]

T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, and S. Chu, “Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase,” Nature 419(6907), 638–641 (2002).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, K. Aathavan, S. Grimes, P. J. Jardine, D. L. Anderson, and C. Bustamante, “Intersubunit coordination in a homomeric ring ATPase,” Nature 457(7228), 446–450 (2009).
[Crossref] [PubMed]

N. J. Carter and R. A. Cross, “Mechanics of the kinesin step,” Nature 435(7040), 308–312 (2005).
[Crossref] [PubMed]

Neuron (1)

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

W. Kaiser and C. G. B. Garrett, “2-Photon excitation in Caf2–Eu2+,” Phys. Rev. Lett. 7(6), 229–231 (1961).
[Crossref]

PLoS ONE (1)

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS ONE 5(7), e11639 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Ji, P. Xu, Z. Li, J. Lu, L. Liu, Y. Zhan, Y. Chen, B. Hille, T. Xu, and L. Chen, “Functional stoichiometry of the unitary calcium-release-activated calcium channel,” Proc. Natl. Acad. Sci. U.S.A. 105(36), 13668–13673 (2008).
[Crossref] [PubMed]

Science (3)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

H. P. Lu, L. Xun, and X. S. Xie, “Single-molecule enzymatic dynamics,” Science 282(5395), 1877–1882 (1998).
[Crossref] [PubMed]

W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283(5408), 1670–1676 (1999).
[Crossref] [PubMed]

Trends Cell Biol. (1)

D. W. Piston, “Imaging living cells and tissues by two-photon excitation microscopy,” Trends Cell Biol. 9(2), 66–69 (1999).
[Crossref] [PubMed]

Other (1)

D. R. Sandison, R. M. Williams, K. S. Wells, J. Strickler, and W. W. Webb, “Quantitative fluorescence confocal laser scanning microscopy (CLSM),” in Handbook Of Biological Confocal Microscopy, J. Pawley, ed. (Springer, 1995), Chap. 3, pp. 39–52.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Experimental setup for single-molecule TPF imaging. Cells were immobilized onto the inner surface of the microfluidic chamber. The laser focus was positioned inside the cell. Lateral scanning of the chamber driven by a 3D motion stage (ESP300, Newport) allows searching of EGFP molecules inside the cell. (b) Sup-T1 cells attached non-specifically onto the coverslip surface.

Fig. 2
Fig. 2

(a) Three independent repeats of cell autofluorescence recorded during one-dimensional scanning of the laser focus across a fixed sup-T1 cell. Cell boundaries were marked by arrows. The gray traces were raw data at 50 nm step size while the red traces were boxcar averaged and decimated with a window size of 10. Traces were shifted along y-axis for clarity of display. (b) Under constant laser illumination, the autofluorescence from a single spot within a fixed sup-T1 cells increases very slowly with time. The gray traces were raw data at 1 Hz while the red traces were boxcar averaged and decimated with a window size of 10. Traces were shifted along y-axis for clarity of display.

Fig. 3
Fig. 3

Representative photobleaching trajectories recorded from EGFP inside sup-T1 and 293T cells. Experimental traces are shown together with corresponding traces simulated with a custom-written Matlab program. (a) Single-step photobleaching in supT-1 cells. Traces are arbitrarily shifted along y axis for clarity of display. (b, c) Two-step photobleaching in supT-1 cells. (d) Single-step photobleaching in 293T cells. Traces are arbitrarily shifted along y axis for clarity of display. (e, f) Two-step photobleaching in 293T cells.

Fig. 4
Fig. 4

Statistics of single EGFP fluorescence inside sup-T1 cell. (a) Histogram of fluorescence intensity (bin size of 12 a.u.). The black curve is fitted by a Gaussian function. (b) Histogram of fluorescence on-time before photobleaching (bin size of 20 s). The black curve is fitted by a single exponential decay.

Fig. 5
Fig. 5

Simulation of single-molecule bleaching trajectories. For an ideal transition that occurs at 30 s, ~90% traces show clear transitions in the presence of Gaussian noise, as shown in (a), while ~10% traces show transitions with a slope as shown in (b), which is similar to the black trace in Fig. 3(a).

Fig. 6
Fig. 6

(a) The TPF excitation volume has a Gaussian profile. ‘r’ marks the radial distance of a fluorophore away from the center of the laser focus. (b) TPF intensity distribution in the absence of measurement noise for EGFP molecules that are randomly located within the excitation volume. (c) In the presence of uncertainties from repeated measurements (d = 10), the asymmetric distribution in (b) changes to become a Gaussian distribution, with peak centered around 50. (d) Increase in the experimental uncertainty d shifts the mean of the Gaussian profile to lower values (d value increases in the order: cyan 5, blue 5.5, green 6.2, red 7.1 and black10).

Fig. 7
Fig. 7

Measurement of molecule depth inside a stained sup-T1 cell. (a) Cartoon representation of the experimental method. (b-e) Four independent examples of single EGFP molecules identified from these measurements. For each example, the stepwise bleaching of the single molecule TPF trajectory is shown on the left. The bright field image of the cell is shown in the middle, which also corresponds to the z-plane at which the single-molecule TPF signal was collected. The blurred cell images on the right shows the cell images after the chamber was moved away from the objective by a distance z so that the laser focus fell on the edge of the cell. Red star marks the position of the laser focus. The scale bar is 5 micron.

Fig. 8
Fig. 8

EGFP fluorescence intensity as a function of laser power. Different symbols represent measurements from different spots within a 293T cell. Straight lines show linear fits in a double logarithmic scale, which give an average slope of 2.10 ± 0.01.

Fig. 9
Fig. 9

(a) Time courses of single-molecule fluorescence of mTFP1.0 inside supT-1 cells. Experimental traces are shown together with corresponding traces simulated with a custom-written Matlab program. Traces are arbitrarily shifted along y axis for clarity of display. (b) Histogram of fluorescence intensity (bin size of 15 a.u.). The black curve is fitted by a Gaussian function. (c) Histogram of fluorescence on-time before photobleaching (bin size of 3 s). The black curve is fitted by a single exponential decay.

Metrics