Abstract

We describe an optimized digital holographic microscopy system (DHM) suitable for high-resolution visualization of living cells under conditions of altered macroscopic mechanical forces such as those that arise from changes in gravitational force. Experiments were performed on both a ground-based microgravity simulation platform known as the random positioning machine (RPM) as well as during a parabolic flight campaign (PFC). Under these conditions the DHM system proved to be robust and reliable. In addition, the stability of the system during disturbances in gravitational force was further enhanced by implementing post-processing algorithms that best exploit the intrinsic advantages of DHM for hologram autofocusing and subsequent image registration. Preliminary results obtained in the form of series of phase images point towards sensible changes of cytoarchitecture under states of altered gravity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Clément and K. Slenzka, Fundamentals of Space Biology. Research on Cells, Animals, and Plants in Space (Microcosm Press, El Segundo, CA, and Springer, New York, 2006).
  2. N. J. Penley, C. P. Schafer, and J.-D. F. Bartoe, “The International Space Station as a microgravity research platform,” Acta Astronaut.50(11), 691–696 (2002).
    [CrossRef] [PubMed]
  3. V. A. Thomas, N. S. Prasad, and C. A. M. Reddy, “Microgravity research platforms—a study,” Curr. Sci. 79, 336–340 (2000).
  4. M. Cogoli, “The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results,” ASGSB Bull.5(2), 59–67 (1992).
    [PubMed]
  5. Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
    [CrossRef] [PubMed]
  6. H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006).
    [CrossRef] [PubMed]
  7. J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
    [CrossRef] [PubMed]
  8. U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996).
    [CrossRef] [PubMed]
  9. M. S. Whorton, J. T. Eldridge, R. C. Ferebee, J. O. Lassiter, and J. W. Redmon, Jr., “Damping mechanisms for microgravity vibration isolation,” MSFC Center Director’s Discretionary Fund Final Report, Project No. 94–07, NASA/TM-1998–206953 (NASA, 1998).
  10. P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
    [CrossRef]
  11. G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).
  12. K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
    [CrossRef]
  13. F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
    [CrossRef]
  14. U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
    [CrossRef]
  15. F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006).
    [CrossRef] [PubMed]
  16. F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
    [CrossRef]
  17. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999).
    [CrossRef] [PubMed]
  18. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt.45(5), 851–863 (2006).
    [CrossRef] [PubMed]
  19. P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42(11), 1938–1946 (2003).
    [CrossRef] [PubMed]
  20. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett.30(5), 468–470 (2005).
    [CrossRef] [PubMed]
  21. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
    [CrossRef] [PubMed]
  22. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  23. E. N. Leith and J. Upatniek, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am.52(10), 1123–1128 (1962).
    [CrossRef]
  24. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
    [CrossRef]
  25. M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys.17, 333–334 (1972).
  26. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992).
    [CrossRef] [PubMed]
  27. K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
    [CrossRef] [PubMed]
  28. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
    [CrossRef] [PubMed]
  29. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt.47(19), D71–D79 (2008).
    [CrossRef] [PubMed]
  30. T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
    [CrossRef] [PubMed]
  31. P. Ferraro, S. Grilli, D. Alfieri, S. De Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Express13(18), 6738–6749 (2005).
    [CrossRef] [PubMed]
  32. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett.33(14), 1626–1628 (2008).
    [CrossRef] [PubMed]
  33. T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992).
    [CrossRef]
  34. A. G. Borst and J. W. A. van Loon, “Techonlogy and developments for the random positioning machine, RPM,” Microgravity Sci. Technol.21(4), 287–292 (2009).
    [CrossRef]
  35. C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
    [CrossRef] [PubMed]
  36. V. Pletser, “Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns,” Acta Astronaut.55(10), 829–854 (2004).
    [CrossRef] [PubMed]
  37. C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
    [CrossRef] [PubMed]
  38. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008).
    [CrossRef] [PubMed]
  39. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A21(12), 2424–2430 (2004).
    [CrossRef] [PubMed]
  40. R. P. Brent, Algorithms for Minimization without Derivatives (Dover, New York, 2002).
  41. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
    [CrossRef]
  42. F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express15(14), 8818–8831 (2007).
    [CrossRef] [PubMed]
  43. E. De Castro and C. Morandi, “Registration of translated and rotated images using finite fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9(5), 700–703 (1987).
    [CrossRef] [PubMed]
  44. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  45. B. Städler, T. M. Blättler, and A. Franco-Obregón, “Time-lapse imaging of in vitro myogenesis using atomic force microscopy,” J. Microsc.237(1), 63–69 (2010).
    [CrossRef] [PubMed]

2011 (1)

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

2010 (4)

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

B. Städler, T. M. Blättler, and A. Franco-Obregón, “Time-lapse imaging of in vitro myogenesis using atomic force microscopy,” J. Microsc.237(1), 63–69 (2010).
[CrossRef] [PubMed]

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

2009 (1)

A. G. Borst and J. W. A. van Loon, “Techonlogy and developments for the random positioning machine, RPM,” Microgravity Sci. Technol.21(4), 287–292 (2009).
[CrossRef]

2008 (4)

2007 (2)

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express15(14), 8818–8831 (2007).
[CrossRef] [PubMed]

2006 (5)

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt.45(5), 851–863 (2006).
[CrossRef] [PubMed]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006).
[CrossRef] [PubMed]

H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006).
[CrossRef] [PubMed]

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A21(12), 2424–2430 (2004).
[CrossRef] [PubMed]

V. Pletser, “Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns,” Acta Astronaut.55(10), 829–854 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (3)

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

N. J. Penley, C. P. Schafer, and J.-D. F. Bartoe, “The International Space Station as a microgravity research platform,” Acta Astronaut.50(11), 691–696 (2002).
[CrossRef] [PubMed]

G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).

2000 (2)

V. A. Thomas, N. S. Prasad, and C. A. M. Reddy, “Microgravity research platforms—a study,” Curr. Sci. 79, 336–340 (2000).

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

1999 (4)

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999).
[CrossRef] [PubMed]

1996 (2)

U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996).
[CrossRef] [PubMed]

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
[CrossRef] [PubMed]

1992 (3)

T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992).
[CrossRef]

M. Cogoli, “The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results,” ASGSB Bull.5(2), 59–67 (1992).
[PubMed]

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992).
[CrossRef] [PubMed]

1987 (1)

E. De Castro and C. Morandi, “Registration of translated and rotated images using finite fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9(5), 700–703 (1987).
[CrossRef] [PubMed]

1972 (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys.17, 333–334 (1972).

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

1962 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Alfieri, D.

Antkowiak, M.

Aspert, N.

Atalick, S.

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

Baechtold, P.

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

Bartoe, J.-D. F.

N. J. Penley, C. P. Schafer, and J.-D. F. Bartoe, “The International Space Station as a microgravity research platform,” Acta Astronaut.50(11), 691–696 (2002).
[CrossRef] [PubMed]

Belosi, F.

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

Bevilacqua, F.

Blättler, T. M.

B. Städler, T. M. Blättler, and A. Franco-Obregón, “Time-lapse imaging of in vitro myogenesis using atomic force microscopy,” J. Microsc.237(1), 63–69 (2010).
[CrossRef] [PubMed]

Blum, J.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Borghi, N.

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

Borisov, A. B.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
[CrossRef] [PubMed]

Borst, A. G.

A. G. Borst and J. W. A. van Loon, “Techonlogy and developments for the random positioning machine, RPM,” Microgravity Sci. Technol.21(4), 287–292 (2009).
[CrossRef]

Boyer, K.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
[CrossRef] [PubMed]

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992).
[CrossRef] [PubMed]

Bredebusch, I.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

Büchi, O.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

Callens, N.

Carl, D.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

Charrière, F.

Chung, C.

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

Cogoli, M.

M. Cogoli, “The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results,” ASGSB Bull.5(2), 59–67 (1992).
[PubMed]

Colomb, T.

Coppola, G.

Cuche, E.

Cullen, D.

De Castro, E.

E. De Castro and C. Morandi, “Registration of translated and rotated images using finite fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9(5), 700–703 (1987).
[CrossRef] [PubMed]

De Nicola, S.

Depeursinge, C.

T. Colomb, N. Pavillon, J. Kühn, E. Cuche, C. Depeursinge, and Y. Emery, “Extended depth-of-focus by digital holographic microscopy,” Opt. Lett.35(11), 1840–1842 (2010).
[CrossRef] [PubMed]

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

F. Charrière, B. Rappaz, J. Kühn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Opt. Express15(14), 8818–8831 (2007).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt.45(5), 851–863 (2006).
[CrossRef] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett.30(5), 468–470 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999).
[CrossRef] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett.24(5), 291–293 (1999).
[CrossRef] [PubMed]

Dewandel, J. L.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Dirksen, D.

Domschke, W.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

Dorschner, J.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Dubois, F.

M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a microparticle field with digital holographic microscopy,” Opt. Lett.33(14), 1626–1628 (2008).
[CrossRef] [PubMed]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006).
[CrossRef] [PubMed]

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Dupont, O.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Edgerton, V. R.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Egli, M.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

El Goresy, A.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Emery, Y.

Engelmann, F.

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

Fechtig, H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Ferraro, P.

Feuerbacher, B.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Fienup, J. R.

Finizio, A.

Flusser, J.

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
[CrossRef]

Franco-Obregón, A.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

B. Städler, T. M. Blättler, and A. Franco-Obregón, “Time-lapse imaging of in vitro myogenesis using atomic force microscopy,” J. Microsc.237(1), 63–69 (2010).
[CrossRef] [PubMed]

Friedrich, U. L. D.

U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Giovane, F.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Gonzalez, A.

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

Grilli, S.

Grubert, B.

U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
[CrossRef]

Grün, E.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Guizar-Sicairos, M.

Gustafson, B. A.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Haddad, W. S.

Hanke, W.

H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006).
[CrossRef] [PubMed]

Hartmann, H. J.

U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
[CrossRef]

Hennelly, B. M.

Henning, T.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Herring, R. A.

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

Hilliger, A.

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

Hoson, T.

T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992).
[CrossRef]

Hoyos, M.

Ip, W. H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Ishihara, A.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Jacquemin, P. B.

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

Javidi, B.

Joannes, L.

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Joop, O.

U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996).
[CrossRef] [PubMed]

Juptner, W.

U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
[CrossRef]

Kamisaka, S.

T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992).
[CrossRef]

Kawano, F.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Keller, H. U.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Kemper, B.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

Kempf, S.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Klahr, H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Kochan, H.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Kozasa, T.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Kronrod, M. A.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys.17, 333–334 (1972).

Kühn, J.

Kurowski, P.

Lai, S.

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

Lang, K.

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

Langehanenberg, P.

Laurin, D.

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

Legros, J. C.

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

Leith, E. N.

Liebling, M.

Longworth, J. W.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
[CrossRef] [PubMed]

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992).
[CrossRef] [PubMed]

Magistretti, P. J.

Magro, C.

Manieri, P.

G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).

Mann, I.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Markiewicz, W. J.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Marquet, P.

Masuda, Y.

T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992).
[CrossRef]

McElhinney, C. P.

McLeod, R.

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

McPherson, A.

Merzlyakov, N. S.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys.17, 333–334 (1972).

Metzler, K.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Möller, W.

H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006).
[CrossRef] [PubMed]

Monnom, O.

Montfort, F.

Morandi, C.

E. De Castro and C. Morandi, “Registration of translated and rotated images using finite fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9(5), 700–703 (1987).
[CrossRef] [PubMed]

Morfill, G.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Mundorf, H.

G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).

Nasca, R.

G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).

Naughton, T. J.

Neuhaus, D.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Niggemann, B.

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

Nomura, T.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Nonaka, I.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Ohira, Y.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Pache, C.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

Parent, J. M.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

Pavillon, N.

Penley, N. J.

N. J. Penley, C. P. Schafer, and J.-D. F. Bartoe, “The International Space Station as a microgravity research platform,” Acta Astronaut.50(11), 691–696 (2002).
[CrossRef] [PubMed]

Pierattini, G.

Pletser, V.

V. Pletser, “Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns,” Acta Astronaut.55(10), 829–854 (2004).
[CrossRef] [PubMed]

Poppe, T.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Prasad, N. S.

V. A. Thomas, N. S. Prasad, and C. A. M. Reddy, “Microgravity research platforms—a study,” Curr. Sci. 79, 336–340 (2000).

Prodi, F.

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

Pruitt, B. L.

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

Pütz, C.

U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996).
[CrossRef] [PubMed]

Queeckers, P.

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

Rappaz, B.

Ratke, L.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Reddy, C. A. M.

V. A. Thomas, N. S. Prasad, and C. A. M. Reddy, “Microgravity research platforms—a study,” Curr. Sci. 79, 336–340 (2000).

Reibaldi, G.

G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).

Rhodes, C. K.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
[CrossRef] [PubMed]

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992).
[CrossRef] [PubMed]

Rösner, H.

H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006).
[CrossRef] [PubMed]

Rott, M.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Roy, R. R.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Santachiara, G.

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

Schafer, C. P.

N. J. Penley, C. P. Schafer, and J.-D. F. Bartoe, “The International Space Station as a microgravity research platform,” Acta Astronaut.50(11), 691–696 (2002).
[CrossRef] [PubMed]

Schäfer, M.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

Schnars, U.

U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
[CrossRef]

Schnekenburger, J.

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

Schräpler, R.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Schwehm, G.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Sim, J. Y.

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

Simmons, C. S.

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

Solem, J. C.

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
[CrossRef] [PubMed]

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992).
[CrossRef] [PubMed]

Sommer, K.

U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
[CrossRef]

Sonig, H. K.

G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).

Städler, B.

B. Städler, T. M. Blättler, and A. Franco-Obregón, “Time-lapse imaging of in vitro myogenesis using atomic force microscopy,” J. Microsc.237(1), 63–69 (2010).
[CrossRef] [PubMed]

Strell, C.

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

Striano, V.

Thomas, V. A.

V. A. Thomas, N. S. Prasad, and C. A. M. Reddy, “Microgravity research platforms—a study,” Curr. Sci. 79, 336–340 (2000).

Thurman, S. T.

Toy, M. F.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

Travaini, S.

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

Ullrich, O.

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

Unser, M.

Upatniek, J.

van Loon, J. W. A.

A. G. Borst and J. W. A. van Loon, “Techonlogy and developments for the random positioning machine, RPM,” Microgravity Sci. Technol.21(4), 287–292 (2009).
[CrossRef]

Vedernikov, A.

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

von Bally, G.

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

Wassermann, T.

H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006).
[CrossRef] [PubMed]

Weidenschilling, S. J.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Westphal, K.

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

Willich, G.

U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996).
[CrossRef] [PubMed]

Wurm, G.

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Yamashita, M.

T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992).
[CrossRef]

Yaroslavskii, L. P.

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys.17, 333–334 (1972).

Yoshinaga, T.

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Yourassowsky, C.

Zänker, K. S.

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

Zitova, B.

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
[CrossRef]

Acta Astronaut. (3)

N. J. Penley, C. P. Schafer, and J.-D. F. Bartoe, “The International Space Station as a microgravity research platform,” Acta Astronaut.50(11), 691–696 (2002).
[CrossRef] [PubMed]

P. B. Jacquemin, D. Laurin, S. Atalick, R. McLeod, S. Lai, and R. A. Herring, “Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope,” Acta Astronaut.60(8-9), 723–727 (2007).
[CrossRef]

V. Pletser, “Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns,” Acta Astronaut.55(10), 829–854 (2004).
[CrossRef] [PubMed]

Adv. Space Res. (1)

Y. Ohira, T. Yoshinaga, T. Nomura, F. Kawano, A. Ishihara, I. Nonaka, R. R. Roy, and V. R. Edgerton, “Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number,” Adv. Space Res.30(4), 777–781 (2002).
[CrossRef] [PubMed]

Appl. Opt. (7)

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, “Fourier-transform holographic microscope,” Appl. Opt.31(24), 4973–4978 (1992).
[CrossRef] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt.38(34), 6994–7001 (1999).
[CrossRef] [PubMed]

P. Ferraro, S. De Nicola, A. Finizio, G. Coppola, S. Grilli, C. Magro, and G. Pierattini, “Compensation of the inherent wave front curvature in digital holographic coherent microscopy for quantitative phase-contrast imaging,” Appl. Opt.42(11), 1938–1946 (2003).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt.45(5), 851–863 (2006).
[CrossRef] [PubMed]

F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Appl. Opt.45(5), 864–871 (2006).
[CrossRef] [PubMed]

C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt.47(19), D71–D79 (2008).
[CrossRef] [PubMed]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt.47(19), D176–D182 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

ASGSB Bull. (1)

M. Cogoli, “The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results,” ASGSB Bull.5(2), 59–67 (1992).
[PubMed]

Atmos. Res. (1)

F. Prodi, G. Santachiara, S. Travaini, F. Belosi, A. Vedernikov, F. Dubois, P. Queeckers, and J. C. Legros, “Digital holography for observing aerosol particles undergoing Brownian motion in microgravity conditions,” Atmos. Res.82(1-2), 379–384 (2006).
[CrossRef]

Curr. Sci. (1)

V. A. Thomas, N. S. Prasad, and C. A. M. Reddy, “Microgravity research platforms—a study,” Curr. Sci. 79, 336–340 (2000).

ESA Bull. (1)

G. Reibaldi, P. Manieri, H. Mundorf, R. Nasca, and H. K. Sonig, “The European Multi-User Facilities for the Columbus Laboratory,” ESA Bull.102, 107–120 (2002).

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. De Castro and C. Morandi, “Registration of translated and rotated images using finite fourier transforms,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-9(5), 700–703 (1987).
[CrossRef] [PubMed]

Image Vis. Comput. (1)

B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vis. Comput.21(11), 977–1000 (2003).
[CrossRef]

J. Biomed. Opt. (2)

C. Pache, J. Kühn, K. Westphal, M. F. Toy, J. M. Parent, O. Büchi, A. Franco-Obregón, C. Depeursinge, and M. Egli, “Digital holographic microscopy real-time monitoring of cytoarchitectural alterations during simulated microgravity,” J. Biomed. Opt.15(2), 026021 (2010).
[CrossRef] [PubMed]

B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schäfer, W. Domschke, and G. von Bally, “Investigation of living pancreas tumor cells by digital holographic microscopy,” J. Biomed. Opt.11(3), 034005 (2006).
[CrossRef] [PubMed]

J. Biotechnol. (1)

U. L. D. Friedrich, O. Joop, C. Pütz, and G. Willich, “The slow rotating centrifuge microscope NIZEMI--a versatile instrument for terrestrial hypergravity and space microgravity research in biology and materials science,” J. Biotechnol.47(2-3), 225–238 (1996).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

C. S. Simmons, J. Y. Sim, P. Baechtold, A. Gonzalez, C. Chung, N. Borghi, and B. L. Pruitt, “Integrated strain array for cellular mechanobiology studies,” J. Micromech. Microeng.21(5), 054016 (2011).
[CrossRef] [PubMed]

J. Microsc. (1)

B. Städler, T. M. Blättler, and A. Franco-Obregón, “Time-lapse imaging of in vitro myogenesis using atomic force microscopy,” J. Microsc.237(1), 63–69 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Plant Res. (1)

T. Hoson, S. Kamisaka, Y. Masuda, and M. Yamashita, “Changes in plant prowth processes under microgravity conditions simulated by a three-dimensional clinostat,” J. Plant Res.105(1), 53–70 (1992).
[CrossRef]

Meas. Sci. Technol. (2)

F. Dubois, L. Joannes, O. Dupont, J. L. Dewandel, and J. C. Legros, “An integrated optical set-up for fluid-physics experiments under microgravity conditions,” Meas. Sci. Technol.10(10), 934–945 (1999).
[CrossRef]

U. Schnars, K. Sommer, B. Grubert, H. J. Hartmann, and W. Juptner, “Holographic diagnostics of fluid experiments onboard the International Space Station,” Meas. Sci. Technol.10(10), 900–903 (1999).
[CrossRef]

Microgravity Sci. Technol. (2)

K. Lang, C. Strell, B. Niggemann, K. S. Zänker, A. Hilliger, F. Engelmann, and O. Ullrich, “Real-time video-microscopy of migrating immune cells in altered gravity during parabolic flights,” Microgravity Sci. Technol.22(1), 63–69 (2010).
[CrossRef]

A. G. Borst and J. W. A. van Loon, “Techonlogy and developments for the random positioning machine, RPM,” Microgravity Sci. Technol.21(4), 287–292 (2009).
[CrossRef]

Nat. Med. (1)

K. Boyer, J. C. Solem, J. W. Longworth, A. B. Borisov, and C. K. Rhodes, “Biomedical three-dimensional holographic microimaging at visible, ultraviolet and X-ray wavelengths,” Nat. Med.2(8), 939–941 (1996).
[CrossRef] [PubMed]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H. U. Keller, W. J. Markiewicz, I. Mann, B. A. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S. J. Weidenschilling, G. Schwehm, K. Metzler, and W. H. Ip, “Growth and form of planetary seedlings: results from a microgravity aggregation experiment,” Phys. Rev. Lett.85(12), 2426–2429 (2000).
[CrossRef] [PubMed]

Protoplasma (1)

H. Rösner, T. Wassermann, W. Möller, and W. Hanke, “Effects of altered gravity on the actin and microtubule cytoskeleton of human SH-SY5Y neuroblastoma cells,” Protoplasma229(2-4), 225–234 (2006).
[CrossRef] [PubMed]

Sov. Phys. Tech. Phys. (1)

M. A. Kronrod, N. S. Merzlyakov, and L. P. Yaroslavskii, “Reconstruction of a hologram with a computer,” Sov. Phys. Tech. Phys.17, 333–334 (1972).

Other (3)

M. S. Whorton, J. T. Eldridge, R. C. Ferebee, J. O. Lassiter, and J. W. Redmon, Jr., “Damping mechanisms for microgravity vibration isolation,” MSFC Center Director’s Discretionary Fund Final Report, Project No. 94–07, NASA/TM-1998–206953 (NASA, 1998).

G. Clément and K. Slenzka, Fundamentals of Space Biology. Research on Cells, Animals, and Plants in Space (Microcosm Press, El Segundo, CA, and Springer, New York, 2006).

R. P. Brent, Algorithms for Minimization without Derivatives (Dover, New York, 2002).

Supplementary Material (3)

» Media 1: MOV (7646 KB)     
» Media 2: MOV (4788 KB)     
» Media 3: MOV (6292 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of a single parabola flight maneuver during PFCs indicating the different gravity levels

Fig. 2
Fig. 2

(a) Schematic of the microscope with the inset showing off-axis recording where M: Mirror, BS: Beam Splitter, BE: Beam Expander, R: Reference Beam, and O: Object Beam, (b) picture of the microscope on RPM (Media 1), and (c) picture of the experimental rack on plane (microscope is enclosed in the bottom shelf of the rack where highlighted by green dashed lines)

Fig. 3
Fig. 3

(a) Comparison of several focus criteria in a propagation distance range of 30cm for an experimental hologram of cell. All criteria excluding variance of amplitude (Var) exhibit a multimodal behavior. Zoomed in inset shows the sharpness ambiguity of plotted criteria. (b) Plot and (c) histogram of the experimentally evaluated autofocusing error of ‘Var’ in object space for various axial sample positions with the center being the physical imaging condition (dashed orange lines indicate ± DOF/2).

Fig. 4
Fig. 4

Flowchart illustrating the post-processing steps. Functional blocks of digital hologram autofocusing are shown with green fill color, and phase image registration steps have blue fill color. Average computation times (referenced to t0) at various checkpoints are also indicated.

Fig. 5
Fig. 5

Imaging of living C2C12 cells expressing eGFP tagged actin on the RPM platform (phase and fluorescence). Phase images with (a) no propagation, (b) after autofocusing, and (c) final registration output are shown for the RPM at rest (d) Fluorescence microscopy mode image after hologram acquisition is shown for comparison. (e-l) Phase images constructed from two holograms and corresponding fluorescence images during RPM rotation show the performance of our proposed post-processing. (Scalebars: 10µm). White arrows on the first column of images points to the cell extent where defocus is best observed.

Fig. 6
Fig. 6

Four frames extracted from DHM Phase and Fluorescence movie (Media 2), top row from 1g control and bottom row from RPM simulated microgravity. Phase images are located at the top respective image in a false color pseudo 3D format, while fluorescence microscopy images are beneath. At every frame, relative time to the control to microgravity transition is indicated with the gravity level

Fig. 7
Fig. 7

DHM Phase movie (Media 3) of a cell acquired during ESA 53rd PFC. Left) False color phase image with reference color bar (top) in degrees. Right) Dynamic phase variation plot in a central region of the cell (indicated with dashed circle) with respect to the instantaneous gravity level. Black dashed line indicates to baseline phase value before the parabola set, and recovery to this value occurs at the end of the parabola set break marked by the arrow.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ(x,y)=2π OPL(x,y) λ =2π [ n c (x,y) n em ]d(x,y) λ
DOF= λ n m N A 2
Spec= u,v log{1+[M(u,v)FFT(|O(x,y)|)]}
Var= 1 N x N y x,y [|O(x,y)| |O(x,y)| ¯ ] 2
Grad= x=1 N x 1 y=1 N y 1 [|O(x,y)||O(x1,y)|] 2 + [|O(x,y)||O(x,y1)|] 2
Lap= x=1 N x 1 y=1 N y 1 [ | O(x+1,y) |+| O(x1,y) |+| O(x,y+1) |+| O(x,y1) |4| O(x,y) | ] 2

Metrics