In July 2011 a new concept of a closed microfluidic system equipped with a fixed micropipette, optical tweezers and a UV-Vis spectrometer was presented [Biomed. Opt. Express 2, 2299 (2011)]. Figure 1 showed falsely oriented mirrors. To clarify the design of the setup, this erratum presents a correct schematic.

©2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gel-based optical waveguides with live cell encapsulation and integrated microfluidics

Aadhar Jain, Allen H.J. Yang, and David Erickson
Opt. Lett. 37(9) 1472-1474 (2012)

Evaluating the toxic effect of an antimicrobial agent on single bacterial cells with optical tweezers

Akbar Samadi, Chensong Zhang, Joseph Chen, S. N. S. Reihani, and Zhigang Chen
Biomed. Opt. Express 6(1) 112-117 (2015)


  • View by:
  • |
  • |
  • |

  1. A. Alrifaiy and K. Ramser, “How to integrate a micropipette into a closed microfluidic system: absorption spectra of an optically trapped erythrocyte,” Biomed. Opt. Express 2(8), 2299–2306 (2011).
    [Crossref] [PubMed]

2011 (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (1)

Fig. 1
Fig. 1 Inverted microscope that incorporates the following techniques: Gastight lab-on-a-chip with an integrated micropipette coupled to a pump system, optical tweezers for 3D steering of the single cells comprising of an IR laser, a beam expander, mirrors and a dichroic mirror and an IR blocking filter to block the IR laser. UV-Vis spectrometer with an integrated optical fiber to record the oxygenation states of the RBC, CCD camera to monitor the trapping dynamics of the cells within the micro-channel system.