Abstract

Conventional optical systems usually provide best image quality on axis, while showing unavoidable gradual decrease in image quality towards the periphery of the field. The optical system of the human eye is not an exception. Within a limiting boundary the image quality can be considered invariant with field angle, and this region is known as the isoplanatic patch. We investigate the isoplanatic patch of eight healthy eyes and measure the wavefront aberration along the pupillary axis compared to the line of sight. The results are used to discuss methods of ocular aberration correction in wide-field retinal imaging with particular application to multi-conjugate adaptive optics systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Mandell, C. Chiang, and S. Klein, “Location of the major corneal reference points,” Optom. Vis. Sci.72, 776–784 (1995).
    [CrossRef] [PubMed]
  2. T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19, 657–669 (2002).
    [CrossRef]
  3. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 30–37.
    [CrossRef]
  4. A. Bradley and L. N. Thibos, “OSA 95: How to measure optical properties of the eye,” presented at OSA 1995 Annual Meeting, Portland, OR, Sept. 10–15, 1995, http://www.opt.indiana.edu/people/faculty/thibos/ablntosa95/slide01.html .
  5. M. Di Jorio, “The general theory of isoplanatism for finite aperture and field,” J. Opt. Soc. Am. A39, 305–319 (1949).
    [CrossRef]
  6. ANSI, “Methods for reporting optical aberrations of the eye,” in American National Standard for Ophthalmics, ANSI Z80.28 (2004).
  7. International standard, “Reporting aberrations of the human eye” in Ophthalmic Optics and Instruments, ISO24157 (2008).
  8. H. J. Wyatt, “The form of the human pupil,” Vision Res.35, 2021–2036 (1995).
    [CrossRef] [PubMed]
  9. Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic and pharmacological dilated conditions,” Invest. Ophthalmol. Visual Sci.43, 2508–2512 (2002).
  10. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A12, 2348–2357 (1995).
    [CrossRef]
  11. M. A. Wilson, M. C. W. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci.69, 129–136 (1992).
    [CrossRef] [PubMed]
  12. R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A23, 219–232 (2006).
    [CrossRef]
  13. L. R. Loper, “The relationship between angle lambda and the residual astigmatism of the eye,” Am. J. Optom. & Arch. Am. Acad. Optom36, 365–377 (1959).
  14. G. K. Von Nooden, Burian-Von Noordon’s binocular vision and ocular motility (C.V. Mosby, St. Louis, 1980).
    [PubMed]
  15. A. Bradley and L. N. Thibos, “Modeling off-axis vision—I: the optical effects of decentering visual targets or the eye’s entrance pupil,” in Vision Models for Target Detection and Resolution, E. Peli, ed. (World Scientific Press, 1995), pp. 313–337.
  16. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001).
    [CrossRef] [PubMed]
  17. H. C. Howland, “The history and methods of ophthalmic wavefront sensing,” J. Refract. Surg.16, 552–553 (2000).
  18. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A11, 1949–1957 (1994).
    [CrossRef]
  19. F. Roddier,“Curvature sensing and compensation: a new concept in adaptive optics,” Appl. Opt.27, 1223–1225 (1988).
    [CrossRef] [PubMed]
  20. R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt.43, 289–293 (1996).
    [CrossRef]
  21. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express10, 419–428 (2002).
    [PubMed]
  22. R. Navarro and L. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye” Optom. Vis. Sci.74, 540–547 (1997).
    [CrossRef] [PubMed]
  23. V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
    [CrossRef]
  24. R. Navarro and E. Moreno-Barriusso, “Laser ray-tracing method for optical testing,” Opt. Lett.24, 951–953 (1998).
    [CrossRef]
  25. R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt.31, 3678–3686 (1992).
    [CrossRef] [PubMed]
  26. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A15, 2449–2456 (1998).
    [CrossRef]
  27. M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
    [PubMed]
  28. P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
    [CrossRef] [PubMed]
  29. M. Tscherning, “Die monochromatischen Aberrationen des menschlichen Auges,” Z. Psychol. Physiol. Sinne6, 456–471 (1894).
  30. S. MacRae and M. Fujieda, “Slit skiascopic-guided ablation using the nidek laser,”J. Refract. Surg.16, S576–S580 (2000).
    [PubMed]
  31. W. J. Smith, The Foucault Test in Modern Optical Engineering, (McGraw- Hill, San Francisco, 2000), pp. 557, 588–592.
  32. R. A. Applegate and H. C. Howland, “Noninvasive measurement of corneal topography,” IEEE Eng. Med. Biol. Mag.14, (1)30–42 (1995).
    [CrossRef]
  33. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retinal Eye Res.27, 45–88 (2008).
    [CrossRef]
  34. M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49, 30–61 (2010).
    [CrossRef]
  35. A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol.91, 551–557 (2007).
    [CrossRef] [PubMed]
  36. R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).
  37. D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, A. Duparr and B. Singh, eds., Proc. SPIE4779, 148–160 (2002).
  38. J. Schwiegerling and D. R. Neal, “Historical development of the Shack- Hartmann wavefront sensor,” in Legends in Applied Optics, R. Shannon, R. Shack, J. E. Harvey, and R. B. Hooker eds.(SPIE, Bellingham WA), pp. 132–139 (2005).
  39. S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vis. Sci.74, 945–962 (1997).
    [CrossRef] [PubMed]
  40. S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vis Sci.74, 931–944 (1997).
    [CrossRef] [PubMed]
  41. D. A. Atchison, “The skew ray issue in ocular aberration measurement,” Optom. Vis Sci.83, 396–398 (2006).
    [CrossRef] [PubMed]
  42. M. Achatz, R. Beck, and W. Bockelmann, “Device and method for measuring the curvature of the cornea,” U.S. Patent 4,159,867 (03 Jul. 1979).
  43. P. R. Yoder, “Topography measuring apparatus,” U.S. Patent 4,902,123 (20 Feb. 1990).
  44. Y. Mejia-Barbosa and D. Malacara-Hernández, “Object surface for applying a modified Hartmann test to measure corneal topography,” Appl. Opt.40, 5778–5786 (2001).
    [CrossRef]
  45. J. Espinosa, D. Mas, and H. T. Kasprzak, “Corneal primary aberrations compensation by oblique light incidence,” J. Biomed. Opt.14, 044003 (2009).
    [CrossRef] [PubMed]
  46. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18, 1793–1803 (2001).
    [CrossRef]
  47. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14, 2884–2892 (1997).
    [CrossRef]
  48. D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A72, 52–61 (1982).
    [CrossRef]
  49. A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse raytracing,” Opt. Express16, 1692–1703 (2008).
    [CrossRef] [PubMed]
  50. A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).
  51. A. V. Dubinin, T. Yu. Cherezova, A. I. Belyakov, and A. V. Kudryashov, “Isoplanatism of the optical system of the human eye,” J. Opt. Technol.75, 172–174 (2008).
    [CrossRef]
  52. P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
    [CrossRef] [PubMed]
  53. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24, 2157–2174 (2007).
    [CrossRef]
  54. M. T. Sheehan, A. V. Goncharov, V. M. O’Dwyer, V. Toal, and C. Dainty, “Population study of the variation in monochromatic aberrations of the normal human eye over the central visual field,” Opt. Express15, 7367–7380 (2007).
    [CrossRef] [PubMed]
  55. E. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” http://cfao.ucolick.org/EO/internships/mainland/posters/erika.pdf .
  56. A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).
  57. J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” Invest Ophthalmol. Visual Sci., ARVO E-Abstract 1195/B60 (2006).
  58. S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A20, 1–10 (2003).
    [CrossRef]
  59. W. N. Charman, “Aberrations and myopia,” Ophthal. Physiol. Opt.25, 285–301 (2005).
    [CrossRef]
  60. A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov, “Anisoplanatism in adaptive compensation of human eye aberrations,” In Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE, 5572, 330–339 (2004).
  61. J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express17, 4454–4467 (2009).
    [CrossRef] [PubMed]
  62. P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27, A37–A47 (2010).
    [CrossRef]
  63. L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).
  64. R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).
  65. K. Y. Li and G. Yoon, “Changes in aberrations and retinal image quality due to tear film dynamics,” Opt. Express14, 12552–12559 (2006).
    [CrossRef] [PubMed]
  66. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: Dependence on the mean accommodative effort,” Opt. Express18, 2668–2681 (2010).
    [CrossRef] [PubMed]
  67. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19, 2329–2348 (2002).
    [CrossRef]
  68. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002).
    [CrossRef] [PubMed]

2010 (3)

2009 (2)

J. Thaung, P. Knutsson, Z. Popovic, and M. Owner-Petersen, “Dual conjugate adaptive optics for wide-field high-resolution retinal imaging,” Opt. Express17, 4454–4467 (2009).
[CrossRef] [PubMed]

J. Espinosa, D. Mas, and H. T. Kasprzak, “Corneal primary aberrations compensation by oblique light incidence,” J. Biomed. Opt.14, 044003 (2009).
[CrossRef] [PubMed]

2008 (4)

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retinal Eye Res.27, 45–88 (2008).
[CrossRef]

A. V. Goncharov, M. Nowakowski, M. T. Sheehan, and C. Dainty, “Reconstruction of the optical system of the human eye with reverse raytracing,” Opt. Express16, 1692–1703 (2008).
[CrossRef] [PubMed]

A. V. Dubinin, T. Yu. Cherezova, A. I. Belyakov, and A. V. Kudryashov, “Isoplanatism of the optical system of the human eye,” J. Opt. Technol.75, 172–174 (2008).
[CrossRef]

2007 (3)

2006 (4)

D. A. Atchison, “The skew ray issue in ocular aberration measurement,” Optom. Vis Sci.83, 396–398 (2006).
[CrossRef] [PubMed]

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).

R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A23, 219–232 (2006).
[CrossRef]

K. Y. Li and G. Yoon, “Changes in aberrations and retinal image quality due to tear film dynamics,” Opt. Express14, 12552–12559 (2006).
[CrossRef] [PubMed]

2005 (2)

W. N. Charman, “Aberrations and myopia,” Ophthal. Physiol. Opt.25, 285–301 (2005).
[CrossRef]

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).

2003 (1)

2002 (6)

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002).
[CrossRef] [PubMed]

T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19, 657–669 (2002).
[CrossRef]

I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express10, 419–428 (2002).
[PubMed]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19, 2329–2348 (2002).
[CrossRef]

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, A. Duparr and B. Singh, eds., Proc. SPIE4779, 148–160 (2002).

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic and pharmacological dilated conditions,” Invest. Ophthalmol. Visual Sci.43, 2508–2512 (2002).

2001 (4)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001).
[CrossRef] [PubMed]

P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
[CrossRef] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18, 1793–1803 (2001).
[CrossRef]

Y. Mejia-Barbosa and D. Malacara-Hernández, “Object surface for applying a modified Hartmann test to measure corneal topography,” Appl. Opt.40, 5778–5786 (2001).
[CrossRef]

2000 (4)

R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
[PubMed]

S. MacRae and M. Fujieda, “Slit skiascopic-guided ablation using the nidek laser,”J. Refract. Surg.16, S576–S580 (2000).
[PubMed]

H. C. Howland, “The history and methods of ophthalmic wavefront sensing,” J. Refract. Surg.16, 552–553 (2000).

1999 (1)

L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).

1998 (2)

1997 (5)

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14, 2884–2892 (1997).
[CrossRef]

S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vis. Sci.74, 945–962 (1997).
[CrossRef] [PubMed]

S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vis Sci.74, 931–944 (1997).
[CrossRef] [PubMed]

R. Navarro and L. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye” Optom. Vis. Sci.74, 540–547 (1997).
[CrossRef] [PubMed]

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

1996 (1)

R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt.43, 289–293 (1996).
[CrossRef]

1995 (4)

H. J. Wyatt, “The form of the human pupil,” Vision Res.35, 2021–2036 (1995).
[CrossRef] [PubMed]

R. Mandell, C. Chiang, and S. Klein, “Location of the major corneal reference points,” Optom. Vis. Sci.72, 776–784 (1995).
[CrossRef] [PubMed]

R. A. Applegate and H. C. Howland, “Noninvasive measurement of corneal topography,” IEEE Eng. Med. Biol. Mag.14, (1)30–42 (1995).
[CrossRef]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A12, 2348–2357 (1995).
[CrossRef]

1994 (1)

1992 (2)

R. H. Webb, C. M. Penney, and K. P. Thompson, “Measurement of ocular local wavefront distortion with a spatially resolved refractometer,” Appl. Opt.31, 3678–3686 (1992).
[CrossRef] [PubMed]

M. A. Wilson, M. C. W. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci.69, 129–136 (1992).
[CrossRef] [PubMed]

1988 (1)

1982 (1)

D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A72, 52–61 (1982).
[CrossRef]

1959 (1)

L. R. Loper, “The relationship between angle lambda and the residual astigmatism of the eye,” Am. J. Optom. & Arch. Am. Acad. Optom36, 365–377 (1959).

1949 (1)

M. Di Jorio, “The general theory of isoplanatism for finite aperture and field,” J. Opt. Soc. Am. A39, 305–319 (1949).
[CrossRef]

1894 (1)

M. Tscherning, “Die monochromatischen Aberrationen des menschlichen Auges,” Z. Psychol. Physiol. Sinne6, 456–471 (1894).

Achatz, M.

M. Achatz, R. Beck, and W. Bockelmann, “Device and method for measuring the curvature of the cornea,” U.S. Patent 4,159,867 (03 Jul. 1979).

Anderson, D. F.

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol.91, 551–557 (2007).
[CrossRef] [PubMed]

Applegate, R. A.

R. A. Applegate and H. C. Howland, “Noninvasive measurement of corneal topography,” IEEE Eng. Med. Biol. Mag.14, (1)30–42 (1995).
[CrossRef]

Artal, P.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002).
[CrossRef] [PubMed]

I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, “Extended source pyramid wave-front sensor for the human eye,” Opt. Express10, 419–428 (2002).
[PubMed]

Ashman, R.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison, “The skew ray issue in ocular aberration measurement,” Optom. Vis Sci.83, 396–398 (2006).
[CrossRef] [PubMed]

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 30–37.
[CrossRef]

Bará, S.

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001).
[CrossRef] [PubMed]

Beck, R.

M. Achatz, R. Beck, and W. Bockelmann, “Device and method for measuring the curvature of the cornea,” U.S. Patent 4,159,867 (03 Jul. 1979).

Bedggood, P.

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27, A37–A47 (2010).
[CrossRef]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
[CrossRef] [PubMed]

Begley, C.

R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).

Begley, C. G.

L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).

Belyakov, A.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).

A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov, “Anisoplanatism in adaptive compensation of human eye aberrations,” In Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE, 5572, 330–339 (2004).

Belyakov, A. I.

Benito, A.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002).
[CrossRef] [PubMed]

Bille, J. F.

Bockelmann, W.

M. Achatz, R. Beck, and W. Bockelmann, “Device and method for measuring the curvature of the cornea,” U.S. Patent 4,159,867 (03 Jul. 1979).

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19, 2329–2348 (2002).
[CrossRef]

R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).

L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).

A. Bradley and L. N. Thibos, “Modeling off-axis vision—I: the optical effects of decentering visual targets or the eye’s entrance pupil,” in Vision Models for Target Detection and Resolution, E. Peli, ed. (World Scientific Press, 1995), pp. 313–337.

Burns, S. A.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic and pharmacological dilated conditions,” Invest. Ophthalmol. Visual Sci.43, 2508–2512 (2002).

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001).
[CrossRef] [PubMed]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A15, 2449–2456 (1998).
[CrossRef]

Campbell, M. C. W.

M. A. Wilson, M. C. W. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci.69, 129–136 (1992).
[CrossRef] [PubMed]

Castejón-Mochón, J. F.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman, “Aberrations and myopia,” Ophthal. Physiol. Opt.25, 285–301 (2005).
[CrossRef]

Cheng, X.

Cherezova, T.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).

A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov, “Anisoplanatism in adaptive compensation of human eye aberrations,” In Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE, 5572, 330–339 (2004).

Cherezova, T. Yu.

Chiang, C.

R. Mandell, C. Chiang, and S. Klein, “Location of the major corneal reference points,” Optom. Vis. Sci.72, 776–784 (1995).
[CrossRef] [PubMed]

Chisholm, W.

Chyzh, I. H.

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

Copland, J.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, A. Duparr and B. Singh, eds., Proc. SPIE4779, 148–160 (2002).

Cox, I. G.

Daaboul, M.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
[CrossRef] [PubMed]

Dainty, C.

Di Jorio, M.

M. Di Jorio, “The general theory of isoplanatism for finite aperture and field,” J. Opt. Soc. Am. A39, 305–319 (1949).
[CrossRef]

Diaz-Santana, L.

Drexler, W.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retinal Eye Res.27, 45–88 (2008).
[CrossRef]

Dubinin, A.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).

A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov, “Anisoplanatism in adaptive compensation of human eye aberrations,” In Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE, 5572, 330–339 (2004).

Dubinin, A. V.

Espinosa, J.

J. Espinosa, D. Mas, and H. T. Kasprzak, “Corneal primary aberrations compensation by oblique light incidence,” J. Biomed. Opt.14, 044003 (2009).
[CrossRef] [PubMed]

Fried, D. L.

D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A72, 52–61 (1982).
[CrossRef]

Fujieda, M.

S. MacRae and M. Fujieda, “Slit skiascopic-guided ablation using the nidek laser,”J. Refract. Surg.16, S576–S580 (2000).
[PubMed]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retinal Eye Res.27, 45–88 (2008).
[CrossRef]

Goelz, S.

Goncharov, A. V.

González, L.

Grimm, B.

Guirao, A.

He, J. C.

Hernández, J. L.

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19, 2329–2348 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).

Hossain, P.

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol.91, 551–557 (2007).
[CrossRef] [PubMed]

Howland, H. C.

H. C. Howland, “The history and methods of ophthalmic wavefront sensing,” J. Refract. Surg.16, 552–553 (2000).

R. A. Applegate and H. C. Howland, “Noninvasive measurement of corneal topography,” IEEE Eng. Med. Biol. Mag.14, (1)30–42 (1995).
[CrossRef]

Iglesias, I.

Julien, Y.

Kaemmerer, M.

P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
[PubMed]

Kasprzak, H. T.

J. Espinosa, D. Mas, and H. T. Kasprzak, “Corneal primary aberrations compensation by oblique light incidence,” J. Biomed. Opt.14, 044003 (2009).
[CrossRef] [PubMed]

Klein, S.

R. Mandell, C. Chiang, and S. Klein, “Location of the major corneal reference points,” Optom. Vis. Sci.72, 776–784 (1995).
[CrossRef] [PubMed]

Klein, S. A.

S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vis. Sci.74, 945–962 (1997).
[CrossRef] [PubMed]

S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vis Sci.74, 931–944 (1997).
[CrossRef] [PubMed]

Knutsson, P.

Konstantopoulos, A.

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol.91, 551–557 (2007).
[CrossRef] [PubMed]

Krinke, H. E.

P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
[PubMed]

Kudryashov, A.

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).

A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov, “Anisoplanatism in adaptive compensation of human eye aberrations,” In Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE, 5572, 330–339 (2004).

Kudryashov, A. V.

Leahy, C.

Leroux, C.

Li, K. Y.

Liang, J.

Lidkea, B.

Loper, L. R.

L. R. Loper, “The relationship between angle lambda and the residual astigmatism of the eye,” Am. J. Optom. & Arch. Am. Acad. Optom36, 365–377 (1959).

López-Gil, N.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002).
[CrossRef] [PubMed]

Losada, L. A.

R. Navarro and L. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye” Optom. Vis. Sci.74, 540–547 (1997).
[CrossRef] [PubMed]

MacRae, S.

S. MacRae and M. Fujieda, “Slit skiascopic-guided ablation using the nidek laser,”J. Refract. Surg.16, S576–S580 (2000).
[PubMed]

Malacara-Hernández, D.

Mandell, R.

R. Mandell, C. Chiang, and S. Klein, “Location of the major corneal reference points,” Optom. Vis. Sci.72, 776–784 (1995).
[CrossRef] [PubMed]

Marcos, S.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001).
[CrossRef] [PubMed]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A15, 2449–2456 (1998).
[CrossRef]

Mas, D.

J. Espinosa, D. Mas, and H. T. Kasprzak, “Corneal primary aberrations compensation by oblique light incidence,” J. Biomed. Opt.14, 044003 (2009).
[CrossRef] [PubMed]

Mejia-Barbosa, Y.

Metha, A.

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27, A37–A47 (2010).
[CrossRef]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
[CrossRef] [PubMed]

Mierdel, P.

P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
[PubMed]

Miller, D. T.

Molebny, S. V.

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

Molebny, V. V.

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

Moreno-Barriusso, E.

Mrochen, M.

P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
[PubMed]

Naoumidis, L. P.

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

Navarro, R.

Neal, D. A.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, A. Duparr and B. Singh, eds., Proc. SPIE4779, 148–160 (2002).

Neal, D. R.

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, A. Duparr and B. Singh, eds., Proc. SPIE4779, 148–160 (2002).

J. Schwiegerling and D. R. Neal, “Historical development of the Shack- Hartmann wavefront sensor,” in Legends in Applied Optics, R. Shannon, R. Shack, J. E. Harvey, and R. B. Hooker eds.(SPIE, Bellingham WA), pp. 132–139 (2005).

Nowakowski, M.

O’Dwyer, V. M.

Owner-Petersen, M.

Pallikaris, I. G.

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

Penney, C. M.

Popovic, Z.

Porter, J.

Prieto, P. M.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001).
[CrossRef] [PubMed]

Ragazzoni, R.

Roddier, F.

Roorda, A.

J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” Invest Ophthalmol. Visual Sci., ARVO E-Abstract 1195/B60 (2006).

Rynders, M.

Salmon, T. O.

Schwiegerling, J.

J. Schwiegerling and D. R. Neal, “Historical development of the Shack- Hartmann wavefront sensor,” in Legends in Applied Optics, R. Shannon, R. Shack, J. E. Harvey, and R. B. Hooker eds.(SPIE, Bellingham WA), pp. 132–139 (2005).

Seiler, T.

P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
[PubMed]

Sheehan, M. T.

Simonet, P.

M. A. Wilson, M. C. W. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci.69, 129–136 (1992).
[CrossRef] [PubMed]

Smith, G.

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
[CrossRef] [PubMed]

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 30–37.
[CrossRef]

Smith, W. J.

W. J. Smith, The Foucault Test in Modern Optical Engineering, (McGraw- Hill, San Francisco, 2000), pp. 557, 588–592.

Sokurenko, V. M.

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

Tarrant, J.

J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” Invest Ophthalmol. Visual Sci., ARVO E-Abstract 1195/B60 (2006).

Thaung, J.

Thibos, L. N.

T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19, 657–669 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19, 2329–2348 (2002).
[CrossRef]

R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).

L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A12, 2348–2357 (1995).
[CrossRef]

A. Bradley and L. N. Thibos, “Modeling off-axis vision—I: the optical effects of decentering visual targets or the eye’s entrance pupil,” in Vision Models for Target Detection and Resolution, E. Peli, ed. (World Scientific Press, 1995), pp. 313–337.

Thompson, K.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic and pharmacological dilated conditions,” Invest. Ophthalmol. Visual Sci.43, 2508–2512 (2002).

Thompson, K. P.

Toal, V.

Tscherning, M.

M. Tscherning, “Die monochromatischen Aberrationen des menschlichen Auges,” Z. Psychol. Physiol. Sinne6, 456–471 (1894).

Tutt, R.

R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).

Von Nooden, G. K.

G. K. Von Nooden, Burian-Von Noordon’s binocular vision and ocular motility (C.V. Mosby, St. Louis, 1980).
[PubMed]

Webb, R. H.

Williams, D. R.

Wilson, M. A.

M. A. Wilson, M. C. W. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci.69, 129–136 (1992).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, “High-speed optical coherence tomography: basics and applications,” Appl. Opt.49, 30–61 (2010).
[CrossRef]

Wyatt, H. J.

H. J. Wyatt, “The form of the human pupil,” Vision Res.35, 2021–2036 (1995).
[CrossRef] [PubMed]

Yang, Y.

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic and pharmacological dilated conditions,” Invest. Ophthalmol. Visual Sci.43, 2508–2512 (2002).

Yoder, P. R.

P. R. Yoder, “Topography measuring apparatus,” U.S. Patent 4,902,123 (20 Feb. 1990).

Yoon, G.

Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components (1)

D. R. Neal, J. Copland, and D. A. Neal, “Shack-Hartmann wavefront sensor precision and accuracy,” in Advanced Characterization Techniques for Optical, Semiconductor, and Data Storage Components, A. Duparr and B. Singh, eds., Proc. SPIE4779, 148–160 (2002).

Am. J. Optom. & Arch. Am. Acad. Optom (1)

L. R. Loper, “The relationship between angle lambda and the residual astigmatism of the eye,” Am. J. Optom. & Arch. Am. Acad. Optom36, 365–377 (1959).

Appl. Opt. (4)

Br. J. Ophthalmol. (1)

A. Konstantopoulos, P. Hossain, and D. F. Anderson, “Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis?” Br. J. Ophthalmol.91, 551–557 (2007).
[CrossRef] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

R. A. Applegate and H. C. Howland, “Noninvasive measurement of corneal topography,” IEEE Eng. Med. Biol. Mag.14, (1)30–42 (1995).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (3)

Y. Yang, K. Thompson, and S. A. Burns, “Pupil location under mesopic, photopic and pharmacological dilated conditions,” Invest. Ophthalmol. Visual Sci.43, 2508–2512 (2002).

L. N. Thibos, X. Hong, A. Bradley, and C. G. Begley, “Deterioration of retinal image quality due to break-up of the corneal tear film,” (ARVO abstract) Invest. Ophthalmol. Visual Sci.40, S544: Abstract No. 2875 (1999).

R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact on tear break-up in human eyes,” Invest. Ophthalmol. Visual Sci.41, 4117–4123 (2000).

J. Biomed. Opt. (3)

J. Espinosa, D. Mas, and H. T. Kasprzak, “Corneal primary aberrations compensation by oblique light incidence,” J. Biomed. Opt.14, 044003 (2009).
[CrossRef] [PubMed]

P. Bedggood, M. Daaboul, R. Ashman, G. Smith, and A. Metha, “Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging,” J. Biomed. Opt.13, 024008 (2008).
[CrossRef] [PubMed]

P. Mierdel, M. Kaemmerer, M. Mrochen, H. E. Krinke, and T. Seiler, “Ocular optical aberrometer for clinical use,” J. Biomed. Opt.6, 200–204 (2001).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

R. Ragazzoni, “Pupil plane wavefront sensing with an oscillating prism,” J. Mod. Opt.43, 289–293 (1996).
[CrossRef]

J. Opt. Soc. Am. A (13)

R. Navarro, L. González, and J. L. Hernández, “Optics of the average normal cornea from general and canonical representations of its surface topography,” J. Opt. Soc. Am. A23, 219–232 (2006).
[CrossRef]

M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle ψ in a population of young adult eyes,” J. Opt. Soc. Am. A12, 2348–2357 (1995).
[CrossRef]

T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19, 657–669 (2002).
[CrossRef]

M. Di Jorio, “The general theory of isoplanatism for finite aperture and field,” J. Opt. Soc. Am. A39, 305–319 (1949).
[CrossRef]

J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, “Measurement of the wavefront aberration of the eye by a fast psychophysical procedure,” J. Opt. Soc. Am. A15, 2449–2456 (1998).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurements of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A11, 1949–1957 (1994).
[CrossRef]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24, 2157–2174 (2007).
[CrossRef]

S. Bará and R. Navarro, “Wide-field compensation of monochromatic eye aberrations: expected performance and design trade-offs,” J. Opt. Soc. Am. A20, 1–10 (2003).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A18, 1793–1803 (2001).
[CrossRef]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14, 2884–2892 (1997).
[CrossRef]

D. L. Fried, “Anisoplanatism in adaptive optics,” J. Opt. Soc. Am. A72, 52–61 (1982).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A19, 2329–2348 (2002).
[CrossRef]

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27, A37–A47 (2010).
[CrossRef]

J. Opt. Technol. (1)

J. Refract. Surg. (3)

H. C. Howland, “The history and methods of ophthalmic wavefront sensing,” J. Refract. Surg.16, 552–553 (2000).

M. Mrochen, M. Kaemmerer, P. Mierdel, H. E. Krinke, and T. Seiler, “Principles of Tscherning Aberrometry,” J. Refract. Surg.16, S570–S571 (2000).
[PubMed]

S. MacRae and M. Fujieda, “Slit skiascopic-guided ablation using the nidek laser,”J. Refract. Surg.16, S576–S580 (2000).
[PubMed]

Ophthal. Physiol. Opt. (1)

W. N. Charman, “Aberrations and myopia,” Ophthal. Physiol. Opt.25, 285–301 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Optom. Vis Sci. (2)

S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vis Sci.74, 931–944 (1997).
[CrossRef] [PubMed]

D. A. Atchison, “The skew ray issue in ocular aberration measurement,” Optom. Vis Sci.83, 396–398 (2006).
[CrossRef] [PubMed]

Optom. Vis. Sci. (4)

S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vis. Sci.74, 945–962 (1997).
[CrossRef] [PubMed]

R. Navarro and L. A. Losada, “Aberrations and relative efficiency of light pencils in the living human eye” Optom. Vis. Sci.74, 540–547 (1997).
[CrossRef] [PubMed]

M. A. Wilson, M. C. W. Campbell, and P. Simonet, “The Julius F. Neumueller Award in Optics, 1989: change of pupil centration with change of illumination and pupil size,” Optom. Vis. Sci.69, 129–136 (1992).
[CrossRef] [PubMed]

R. Mandell, C. Chiang, and S. Klein, “Location of the major corneal reference points,” Optom. Vis. Sci.72, 776–784 (1995).
[CrossRef] [PubMed]

Proc. SPIE (3)

V. V. Molebny, I. G. Pallikaris, L. P. Naoumidis, I. H. Chyzh, S. V. Molebny, and V. M. Sokurenko, “Retina ray-tracing technique for eye-refraction mapping,” Proc. SPIE2971, 175–183 (1997).
[CrossRef]

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Anisoplanatism in human retina imaging,” Proc. SPIE5894, 88–94 (2005).

A. Dubinin, T. Cherezova, A. Belyakov, and A. Kudryashov, “Human eye anisoplanatism: eye as a lamellar structure,” Proc. SPIE6138, 260–266 (2006).

Prog. Retinal Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retinal Eye Res.27, 45–88 (2008).
[CrossRef]

Vision Res. (3)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41, 3861–3871 (2001).
[CrossRef] [PubMed]

H. J. Wyatt, “The form of the human pupil,” Vision Res.35, 2021–2036 (1995).
[CrossRef] [PubMed]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res.42, 1611–1617 (2002).
[CrossRef] [PubMed]

Z. Psychol. Physiol. Sinne (1)

M. Tscherning, “Die monochromatischen Aberrationen des menschlichen Auges,” Z. Psychol. Physiol. Sinne6, 456–471 (1894).

Other (14)

W. J. Smith, The Foucault Test in Modern Optical Engineering, (McGraw- Hill, San Francisco, 2000), pp. 557, 588–592.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1998).

J. Schwiegerling and D. R. Neal, “Historical development of the Shack- Hartmann wavefront sensor,” in Legends in Applied Optics, R. Shannon, R. Shack, J. E. Harvey, and R. B. Hooker eds.(SPIE, Bellingham WA), pp. 132–139 (2005).

ANSI, “Methods for reporting optical aberrations of the eye,” in American National Standard for Ophthalmics, ANSI Z80.28 (2004).

International standard, “Reporting aberrations of the human eye” in Ophthalmic Optics and Instruments, ISO24157 (2008).

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000), pp. 30–37.
[CrossRef]

A. Bradley and L. N. Thibos, “OSA 95: How to measure optical properties of the eye,” presented at OSA 1995 Annual Meeting, Portland, OR, Sept. 10–15, 1995, http://www.opt.indiana.edu/people/faculty/thibos/ablntosa95/slide01.html .

G. K. Von Nooden, Burian-Von Noordon’s binocular vision and ocular motility (C.V. Mosby, St. Louis, 1980).
[PubMed]

A. Bradley and L. N. Thibos, “Modeling off-axis vision—I: the optical effects of decentering visual targets or the eye’s entrance pupil,” in Vision Models for Target Detection and Resolution, E. Peli, ed. (World Scientific Press, 1995), pp. 313–337.

J. Tarrant and A. Roorda, “The extent of the isoplanatic patch of the human eye,” Invest Ophthalmol. Visual Sci., ARVO E-Abstract 1195/B60 (2006).

A. Dubinin, A. Belyakov, T. Cherezova, and A. Kudryashov, “Anisoplanatism in adaptive compensation of human eye aberrations,” In Optics in Atmospheric Propagation and Adaptive Systems VII, J. D. Gonglewski and K. Stein, eds., Proc. SPIE, 5572, 330–339 (2004).

E. Maida, K. Venkateswaran, J. Marsack, and A. Roorda, “What is the size of the isoplanatic patch in the human eye?” http://cfao.ucolick.org/EO/internships/mainland/posters/erika.pdf .

M. Achatz, R. Beck, and W. Bockelmann, “Device and method for measuring the curvature of the cornea,” U.S. Patent 4,159,867 (03 Jul. 1979).

P. R. Yoder, “Topography measuring apparatus,” U.S. Patent 4,902,123 (20 Feb. 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic sketch of a selection of ocular axes and angles formed by these axes. The axes are indicated by the following lines; solid black (line of sight), solid blue (pupillary axis), dashed green (visual axis), dashed red (optical axis), and dashed black (videokerato-scope axis). The center of curvature of the posterior cornea C2 is omitted for the sake of clarity. The exit pupil is also omitted for clarity although its center EP’ is shown.

Fig. 2
Fig. 2

Optical layout of the iDesignTM combined wavefront aberrometer and corneal topographer.

Fig. 3
Fig. 3

Fixation target with 129 field points used in experiment. There are 24 semi-meridians with 1 degree radial increments. Note that the actual target used was a negative of this figure with white fixation points and labels on a black background.

Fig. 5
Fig. 5

Comparison between Zernike wavefront aberration coefficients measured at two reference axes: line of sight (LOS) and pupillary axis (PA), given in microns. Error bars are ± 1 standard deviation. Eight eyes of four subjects are shown with wavefront abberations evaluated over a 6 mm pupil diameter. Data was fitted to 6th order but the 6th order is omitted from display.

Fig. 4
Fig. 4

Pupillary (PA), videokeratometric (VK) axes and the line of sight (LOS). On the right: the actual view of a measured eye that correspond to the sketched cases from the left side.

Fig. 6
Fig. 6

Total RMS wavefront error for 6 mm pupil diameter of all eyes measured across field angle ω with the origin centred on the line of sight (LOS). The position of the pupillary axis (PA) is also indicated. Note that maps for subject 3 use a separate color scale.

Fig. 7
Fig. 7

Residual wavefront for 6 mm pupil diameter of all eyes across field angle ω. Obtained by subtracting the wavefront along the line of sight from each field point. Note that maps for subject 3 use a separate color scale.

Fig. 8
Fig. 8

Residual wavefront for 6 mm pupil diameter of all eyes across field angle ω. Obtained by subtracting the wavefront along the pupillary axis from each field point. Note that maps for subject 3 use a separate color scale.

Tables (4)

Tables Icon

Table 3 Subject details. OD - right eye, OS - left eye.

Tables Icon

Table 1 Repeatability of iDesign wavefront aberrometry measurements on real and artificial eyes. SD is the standard deviation. See text for comments on the proportionally significant tip/tilt values for the artificial eye repeatability.

Tables Icon

Table 2 Repeatability of iDesign topography corneal elevation measurements on real and artificial eyes. SD is the standard deviation.

Tables Icon

Table 4 RMS wavefront error measured on the line of sight (LOS) compared to the pupillary axis (PA). OD - right eye, OS - left eye. The dominant eye of each subject is indicated with a (*) symbol.

Metrics