Abstract

Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(21), 14160–14171 (2011).
    [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high–resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
    [CrossRef]
  3. H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am A18(3), 497–506 (2001).
    [CrossRef]
  4. M. Zhu, M. Collins, and D. R. Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthal. Physiol. Opt.24(6), 562–571 (2004).
    [CrossRef]
  5. S. Martinez-Conde, S. L. Macknick, and D. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5, 229–240 (2004).
    [CrossRef] [PubMed]
  6. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave–front measurements at the human eye with a custom CMOS–based Hartmann–Shack sensor,” Opt. Express11(21), 2704–2716 (2003).
    [CrossRef] [PubMed]
  7. N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).
  8. B. Sahin, F. Harms, B. Lamory, and L. vabre, “A pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE699169910G (2008).
    [CrossRef]
  9. B. Sahin, F. Harms, and B. Lamory, “Performance assessment of a pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE7139713911 (2008).
    [CrossRef]
  10. M. Zacharria, B. Lamory, and N. Château, “Biomedical imaging: new view of the eye,” Nat. Photon.5(1), 24–26 (2011).
    [CrossRef]
  11. C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
    [CrossRef]
  12. B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
    [CrossRef]
  13. B. Sahin, “Correction of the aberrations of the eye using adaptive optics with pupil tracking,” Ph.D. thesis (School of Physics, National University of Ireland, Galway, 2011); http://optics.nuigalway.ie/theses.
  14. G.-M. Dai, Wavefront Optics for Vision Correction (SPIE, 2008).
    [CrossRef]
  15. A. Guirao, I. G. Cox, and D. R. Williams, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher order aberrations,” J. Opt. Soc. Am. A18(5), 1003–1015 (2001).
    [CrossRef]
  16. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closedloop bandwidths in ocular adaptive optics,” Opt. Express11(20), 2597–2605 (2003).
    [CrossRef] [PubMed]
  17. K. M. Hampson and E. H. Mallen, “Multifractal nature of ocular aberration dynamics of the human eye,” Biomed. Opt. Express2(3), 464–477 (2011).
    [CrossRef] [PubMed]
  18. W. H. Press, “Flicker noises in astronomy and elsewhere,” Comments Astrophys.7(4), 103–119 (1978).
  19. D. Aks, G. J. Zelinsky, and J. C. Sprott, “Memory across eye-movements: 1/f dynamic in visual search,” Nonlinear Dynam. Psychol. Life Sci.6(1), 1–25 (2002).
    [CrossRef]
  20. A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
    [CrossRef] [PubMed]
  21. V. I. H. Kwa and O. L. Lopez, “Fractal analysis of retinal vessels: Peeping at the tree of life?” Neurology74(14), 1088–1089 (2010).
    [CrossRef] [PubMed]

2011 (5)

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(21), 14160–14171 (2011).
[CrossRef] [PubMed]

M. Zacharria, B. Lamory, and N. Château, “Biomedical imaging: new view of the eye,” Nat. Photon.5(1), 24–26 (2011).
[CrossRef]

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
[CrossRef]

K. M. Hampson and E. H. Mallen, “Multifractal nature of ocular aberration dynamics of the human eye,” Biomed. Opt. Express2(3), 464–477 (2011).
[CrossRef] [PubMed]

2010 (1)

V. I. H. Kwa and O. L. Lopez, “Fractal analysis of retinal vessels: Peeping at the tree of life?” Neurology74(14), 1088–1089 (2010).
[CrossRef] [PubMed]

2008 (2)

B. Sahin, F. Harms, B. Lamory, and L. vabre, “A pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE699169910G (2008).
[CrossRef]

B. Sahin, F. Harms, and B. Lamory, “Performance assessment of a pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE7139713911 (2008).
[CrossRef]

2007 (1)

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

2004 (2)

M. Zhu, M. Collins, and D. R. Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthal. Physiol. Opt.24(6), 562–571 (2004).
[CrossRef]

S. Martinez-Conde, S. L. Macknick, and D. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5, 229–240 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

D. Aks, G. J. Zelinsky, and J. C. Sprott, “Memory across eye-movements: 1/f dynamic in visual search,” Nonlinear Dynam. Psychol. Life Sci.6(1), 1–25 (2002).
[CrossRef]

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

2001 (2)

1997 (1)

1978 (1)

W. H. Press, “Flicker noises in astronomy and elsewhere,” Comments Astrophys.7(4), 103–119 (1978).

Aks, D.

D. Aks, G. J. Zelinsky, and J. C. Sprott, “Memory across eye-movements: 1/f dynamic in visual search,” Nonlinear Dynam. Psychol. Life Sci.6(1), 1–25 (2002).
[CrossRef]

alKalbani, M.

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

Amaral, L. A. N.

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

Aragon, J. L.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am A18(3), 497–506 (2001).
[CrossRef]

Artal, P.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am A18(3), 497–506 (2001).
[CrossRef]

Baily, C.

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

Bille, J.

Boyle, G.

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

Château, N.

M. Zacharria, B. Lamory, and N. Château, “Biomedical imaging: new view of the eye,” Nat. Photon.5(1), 24–26 (2011).
[CrossRef]

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

Coakley, D.

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

Collins, M.

M. Zhu, M. Collins, and D. R. Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthal. Physiol. Opt.24(6), 562–571 (2004).
[CrossRef]

Collins, N.

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

Cox, I. G.

Dai, G.-M.

G.-M. Dai, Wavefront Optics for Vision Correction (SPIE, 2008).
[CrossRef]

Dainty, C.

B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
[CrossRef]

L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closedloop bandwidths in ocular adaptive optics,” Opt. Express11(20), 2597–2605 (2003).
[CrossRef] [PubMed]

Diaz-Santana, L.

Gasson, P.

Goldberger, A. L.

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

Guirao, A.

Hampson, K. M.

Harms, F.

B. Sahin, F. Harms, B. Lamory, and L. vabre, “A pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE699169910G (2008).
[CrossRef]

B. Sahin, F. Harms, and B. Lamory, “Performance assessment of a pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE7139713911 (2008).
[CrossRef]

Hausdorff, J. M.

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

Hofer, H.

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(21), 14160–14171 (2011).
[CrossRef] [PubMed]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am A18(3), 497–506 (2001).
[CrossRef]

Hubel, D.

S. Martinez-Conde, S. L. Macknick, and D. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5, 229–240 (2004).
[CrossRef] [PubMed]

Iskander, D. R.

M. Zhu, M. Collins, and D. R. Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthal. Physiol. Opt.24(6), 562–571 (2004).
[CrossRef]

Ivanov, P. C.

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

Kilmartin, D.

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

Kwa, V. I. H.

V. I. H. Kwa and O. L. Lopez, “Fractal analysis of retinal vessels: Peeping at the tree of life?” Neurology74(14), 1088–1089 (2010).
[CrossRef] [PubMed]

Lamory, B.

M. Zacharria, B. Lamory, and N. Château, “Biomedical imaging: new view of the eye,” Nat. Photon.5(1), 24–26 (2011).
[CrossRef]

B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
[CrossRef]

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

B. Sahin, F. Harms, and B. Lamory, “Performance assessment of a pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE7139713911 (2008).
[CrossRef]

B. Sahin, F. Harms, B. Lamory, and L. vabre, “A pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE699169910G (2008).
[CrossRef]

Levecq, X.

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
[CrossRef]

Li, C.

Liang, J.

Lopez, O. L.

V. I. H. Kwa and O. L. Lopez, “Fractal analysis of retinal vessels: Peeping at the tree of life?” Neurology74(14), 1088–1089 (2010).
[CrossRef] [PubMed]

Macknick, S. L.

S. Martinez-Conde, S. L. Macknick, and D. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5, 229–240 (2004).
[CrossRef] [PubMed]

Mallen, E. H.

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknick, and D. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5, 229–240 (2004).
[CrossRef] [PubMed]

Miller, D. T.

Munro, I.

Nakashima, K.

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

Nirmaier, T.

Pâques, M.

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

Peng, C.-K.

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

Porter, J.

Press, W. H.

W. H. Press, “Flicker noises in astronomy and elsewhere,” Comments Astrophys.7(4), 103–119 (1978).

Pudasaini, G.

Queener, H.

Sahin, B.

B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
[CrossRef]

B. Sahin, F. Harms, B. Lamory, and L. vabre, “A pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE699169910G (2008).
[CrossRef]

B. Sahin, F. Harms, and B. Lamory, “Performance assessment of a pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE7139713911 (2008).
[CrossRef]

B. Sahin, “Correction of the aberrations of the eye using adaptive optics with pupil tracking,” Ph.D. thesis (School of Physics, National University of Ireland, Galway, 2011); http://optics.nuigalway.ie/theses.

Singer, B.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am A18(3), 497–506 (2001).
[CrossRef]

Sprott, J. C.

D. Aks, G. J. Zelinsky, and J. C. Sprott, “Memory across eye-movements: 1/f dynamic in visual search,” Nonlinear Dynam. Psychol. Life Sci.6(1), 1–25 (2002).
[CrossRef]

Sredar, N.

Stanley, H. E.

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

Torti, C.

Vabre, L.

B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
[CrossRef]

B. Sahin, F. Harms, B. Lamory, and L. vabre, “A pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE699169910G (2008).
[CrossRef]

Viard, C.

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

Williams, D. R.

Zacharria, M.

M. Zacharria, B. Lamory, and N. Château, “Biomedical imaging: new view of the eye,” Nat. Photon.5(1), 24–26 (2011).
[CrossRef]

Zelinsky, G. J.

D. Aks, G. J. Zelinsky, and J. C. Sprott, “Memory across eye-movements: 1/f dynamic in visual search,” Nonlinear Dynam. Psychol. Life Sci.6(1), 1–25 (2002).
[CrossRef]

Zhu, M.

M. Zhu, M. Collins, and D. R. Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthal. Physiol. Opt.24(6), 562–571 (2004).
[CrossRef]

Biomed. Opt. Express (1)

Comments Astrophys. (1)

W. H. Press, “Flicker noises in astronomy and elsewhere,” Comments Astrophys.7(4), 103–119 (1978).

J. Eye Movem. Res. 1(ECEM2007 Abstracts) (1)

N. Collins, M. alKalbani, G. Boyle, C. Baily, D. Kilmartin, and D. Coakley, “Characterisation of the tremor component of fixational eye movements,” Special issue Conference Abstracts. 14th European Conference on Eye Movements, J. Eye Movem. Res. 1(ECEM2007 Abstracts), 54 (2007).

J. Opt. Soc. Am A (1)

H. Hofer, P. Artal, B. Singer, J. L. Aragon, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am A18(3), 497–506 (2001).
[CrossRef]

J. Opt. Soc. Am. A (2)

Nat. Photon. (1)

M. Zacharria, B. Lamory, and N. Château, “Biomedical imaging: new view of the eye,” Nat. Photon.5(1), 24–26 (2011).
[CrossRef]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknick, and D. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5, 229–240 (2004).
[CrossRef] [PubMed]

Neurology (1)

V. I. H. Kwa and O. L. Lopez, “Fractal analysis of retinal vessels: Peeping at the tree of life?” Neurology74(14), 1088–1089 (2010).
[CrossRef] [PubMed]

Nonlinear Dynam. Psychol. Life Sci. (1)

D. Aks, G. J. Zelinsky, and J. C. Sprott, “Memory across eye-movements: 1/f dynamic in visual search,” Nonlinear Dynam. Psychol. Life Sci.6(1), 1–25 (2002).
[CrossRef]

Ophthal. Physiol. Opt. (1)

M. Zhu, M. Collins, and D. R. Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthal. Physiol. Opt.24(6), 562–571 (2004).
[CrossRef]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A.99(3), 2466–2472 (2002).
[CrossRef] [PubMed]

Proc. SPIE (4)

C. Viard, K. Nakashima, B. Lamory, M. Pâques, X. Levecq, and N. Château, “Imaging microscopic structures in pathological retinas using a flood–illumination adaptive optics retinal camera,” Proc. SPIE7885788509 (2011).
[CrossRef]

B. Sahin, B. Lamory, X. Levecq, L. Vabre, and C. Dainty, “Retinal imaging system with adaptive optics enhanced with pupil tracking,” Proc. SPIE7885788517 (2011).
[CrossRef]

B. Sahin, F. Harms, B. Lamory, and L. vabre, “A pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE699169910G (2008).
[CrossRef]

B. Sahin, F. Harms, and B. Lamory, “Performance assessment of a pupil tracking system for adaptive optics retinal imaging,” Proc. SPIE7139713911 (2008).
[CrossRef]

Other (2)

B. Sahin, “Correction of the aberrations of the eye using adaptive optics with pupil tracking,” Ph.D. thesis (School of Physics, National University of Ireland, Galway, 2011); http://optics.nuigalway.ie/theses.

G.-M. Dai, Wavefront Optics for Vision Correction (SPIE, 2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The near infrared eye image showing superimposed estimation of the parabolic fits to the pupil borders, fright (x,y) and fleft (x,y), also indicated are their calculated minimum or maximum (xright, yright) and (xleft, yleft).

Fig. 2
Fig. 2

Adaptive optics system for retinal imaging: the light sources for wavefront sensing (dashed), imaging (solid) and pupil tracking (dotted) that are reflected off the eye are selectively filtered by two dichroic beam splitters (BS1 and BS2). The first and second control algorithms are called based on wavefront sensor and pupil tracking measurements respectively to calculate the commands for the desired shape so that the deformable mirror reshapes the imaging beam (the paths showing light sources entering the eye and optics necessary to conjugate the wavefront sensor and the deformable mirror to the pupil of the eye are not shown for simplicity).

Fig. 3
Fig. 3

(top row) Plots of polynomials representing coma f(x,y) = 3y3 + 3x2y – 2y and its derivative on x axis f x = 6 x y, (bottom row) subtraction of 3 × f x from f(x,y) yields f ( x , y ) 3 × f x = 3 y 3 + 3 x 2 y 18 x y 2 y, which is equivalent to f(x – 3,y) except for the tilt term.

Fig. 4
Fig. 4

Four loops named WFPT, AOPT, WFPTa and AOPTL designed for the experiments all of which worked at ∼8.4 Hz. The deformable mirror (DM), the wavefront sensor (WFS), the pupil tracker (PT), the control algorithm based on wavefront sensing (CA1) and the control algorithm based on pupil tracking (CA2) are shown accordingly. The solid line linking two elements means that there is a feedback mechanism controlled by one of the algorithms. The deformable mirror outside the WFPTa loop means that it is not updated at each loop: it is static.

Fig. 5
Fig. 5

Wavefront RMS of the WFPT and residual wavefront RMSs of the AOPT, WFPTa and AOPTL loop experiments with a model eye along with the simulation of the WFPTa loop and its residual error RMS; also shown in the same color is the respective pupil positions (P.) of the loops. The data represents only one session performed for each type of loop and it is not an average of several sessions.

Fig. 6
Fig. 6

Correlation of the RMS of the measured and the simulated wavefronts of the moving eye in an open loop (WFPTa). The data was categorized into two: the green colored data indicates that the model eye was moving away from the initial position and the purple-grey colored data was taken while the eye was returning back to its initial position

Fig. 7
Fig. 7

Subject 1 : (a) Wavefront RMS of the WFPT and residual wavefront RMSs of the (b) AOPT, (c) WFPTa loop experiments in vivo with Zernike orders up to five (tilt or defocus terms are not included in the total RMS or in the Zernike coefficients). The square and diagonal markers indicate a discontinuity in the wavefront sensor and pupil tracker measurements respectively. (d) The simulated wavefront for the WFPTa loop and its error RMS and (e) its correlation with the measured wavefront RMS are also shown. The data represents only one session performed for each type of loop and it is not an average of several sessions.

Fig. 8
Fig. 8

Subject 1: Residual wavefront RMS and Zernike orders up to five for the AOPTL loop in vivo (tilt or defocus terms are not included in the total RMS or in the Zernike coefficients). The square and diagonal markers indicate a discontinuity following that moment in the wavefront sensor and pupil tracker measurements respectively. The data represents only one session performed for each type of loop and it is not an average of several sessions.

Fig. 9
Fig. 9

Subject 1: Wavefront RMS of the WFPT and residual wavefront RMSs of the AOPT, WFPTa and AOPTL loop experiments in vivo along with the residual error of the WFPTa simulations and their respective pupil positions (P.) shown in the same color.

Fig. 10
Fig. 10

The adaptive optics loop which incorporates all the active elements: the deformable mirror (DM), the wavefront sensor (WFS), the pupil tracker (PT), the control algorithm based on wavefront sensing (CA1) and the control algorithm based on pupil tracking (CA2), where the pupil tracker and the deformable mirror is called two times in a loop. The solid line linking the elements means that there is a feedback mechanism controlled by one of the algorithms.

Fig. 11
Fig. 11

Power spectra of WFPT loop (70 s) and pupil tracking (214 s) data showing a 1/fα like trend (several recordings were added for a longer sequence).

Tables (2)

Tables Icon

Table 1 Exposure and acquisition times for the cameras in the retinal imaging system and calculation times for the control algorithms.

Tables Icon

Table 2 Measurement data for the model eye, Subject 1 (aged 22), Subject 2 (aged 27) and Subject 3 (aged 40); PS means mean pupil shift at each loop; PA is the area in which the pupil center normally was (2σx × 2σy); NL means number of lenslets that was used for wavefront sensor measurements; DP means mean diameter of the pupil of the eye during the measurements; WFPTa Sim is the simulated wavefront, WFPTa Err is the residual wavefront error of the simulations. All the units are in microns, except for the PA (μm2) and NL (lenslets).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

( x center , y center , D ) = ( x right + x left 2 , y right + y left 2 , x right x left ) .
v = I × s ,
Δ x v = I × Δ x s
Δ y v = I × Δ y s ,
[ a b ] = M l × [ cos θ sin θ sin θ cos θ ] [ Δ x Δ y ]
Δ v ( a , b ) = a × Δ x v + b × Δ y v
v 1 ( a , b ) = v 0 + Δ v ( a , b ) ,
S ( f ) = 1 / f α

Metrics