Abstract

Image correlation spectroscopy (ICS) is known to be a useful tool for the evaluation of fiber width in the extracellular matrix. Here we evaluate a more general from of ICS fit parameters for fiber networks and arrive at a means of quantifying the fiber density, pore size and length which facilitates the characterization of the extracellular matrix. A simulation package was made to create images with different structural properties of fiber networks such as fiber orientation, width, fiber density and length. A pore finding algorithm was developed which determines the distribution of circular voids in the image. Collagen I hydrogels were prepared under different polymerization conditions for validation of our pore size algorithm with microscopy data. ICS parameters included amplitude, standard deviation and ellipticity and are shown to predict the structural properties of fiber networks in a quantitative manner. While the fiber width is related to the ICS sigma; the fiber density relates to the pore size distribution which correlates with the ICS amplitude in thresholded images. Fiber length is related to ICS ellipticity if the fibers have a preferred orientation. Findings from ICS and pore distribution algorithms were verified for both simulated and microscopy data. Based on these findings, we conclude that ICS can be used in the assessment of the extracellular matrix and the prediction of fiber orientation, width, density, length and matrix pore size.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Nohe and N. O. Petersen, “Image correlation spectroscopy,” Sci. STKE2007(417), pl7 (2007).
    [CrossRef] [PubMed]
  2. D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys.49(3), 141–164 (2007).
    [CrossRef] [PubMed]
  3. M. Srivastava and N. O. Petersen, “Diffusion of transferrin receptor clusters,” Biophys. Chem.75(3), 201–211 (1998).
    [CrossRef] [PubMed]
  4. P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc.200(1), 14–25 (2000).
    [CrossRef] [PubMed]
  5. A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
    [CrossRef] [PubMed]
  6. C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
    [CrossRef] [PubMed]
  7. C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
    [CrossRef] [PubMed]
  8. P. Friedl and K. Wolf, “Plasticity of cell migration: a multiscale tuning model,” J. Cell Biol.188(1), 11–19 (2010).
    [CrossRef] [PubMed]
  9. F. Sabeh, R. Shimizu-Hirota, and S. J. Weiss, “Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited,” J. Cell Biol.185(1), 11–19 (2009).
    [CrossRef] [PubMed]
  10. B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
    [CrossRef] [PubMed]
  11. D. Kolin, “ICS Tutorial” (Cell Migration Consortium, 2006), http://www.cellmigration.org/resource/imaging/imaging_resources.shtml#software .
  12. R. Lumia, “A new three-dimensional connected components algorithm,” Comput. Vis. Graph. Image Process.23(2), 207–217 (1983).
    [CrossRef]
  13. N. D. Kirkpatrick, S. Andreou, J. B. Hoying, and U. Utzinger, “Live imaging of collagen remodeling during angiogenesis,” Am. J. Physiol. Heart Circ. Physiol.292(6), H3198–H3206 (2007).
    [CrossRef] [PubMed]
  14. J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall Signal Processing Series (Prentice Hall, Englewood Cliffs, N.J., 1990), pp. xvi, 694.
  15. K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics Gems IV (Academic Press Professional, 1994), pp. 474–485.
  16. N. Otsu, “Threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
    [CrossRef]

2010

P. Friedl and K. Wolf, “Plasticity of cell migration: a multiscale tuning model,” J. Cell Biol.188(1), 11–19 (2010).
[CrossRef] [PubMed]

2009

F. Sabeh, R. Shimizu-Hirota, and S. J. Weiss, “Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited,” J. Cell Biol.185(1), 11–19 (2009).
[CrossRef] [PubMed]

2008

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

2007

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

N. D. Kirkpatrick, S. Andreou, J. B. Hoying, and U. Utzinger, “Live imaging of collagen remodeling during angiogenesis,” Am. J. Physiol. Heart Circ. Physiol.292(6), H3198–H3206 (2007).
[CrossRef] [PubMed]

A. Nohe and N. O. Petersen, “Image correlation spectroscopy,” Sci. STKE2007(417), pl7 (2007).
[CrossRef] [PubMed]

D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys.49(3), 141–164 (2007).
[CrossRef] [PubMed]

2005

A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
[CrossRef] [PubMed]

2002

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
[CrossRef] [PubMed]

2000

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc.200(1), 14–25 (2000).
[CrossRef] [PubMed]

1998

M. Srivastava and N. O. Petersen, “Diffusion of transferrin receptor clusters,” Biophys. Chem.75(3), 201–211 (1998).
[CrossRef] [PubMed]

1983

R. Lumia, “A new three-dimensional connected components algorithm,” Comput. Vis. Graph. Image Process.23(2), 207–217 (1983).
[CrossRef]

1979

N. Otsu, “Threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

Andreou, S.

N. D. Kirkpatrick, S. Andreou, J. B. Hoying, and U. Utzinger, “Live imaging of collagen remodeling during angiogenesis,” Am. J. Physiol. Heart Circ. Physiol.292(6), H3198–H3206 (2007).
[CrossRef] [PubMed]

Ellisman, M. H.

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc.200(1), 14–25 (2000).
[CrossRef] [PubMed]

Friedl, P.

P. Friedl and K. Wolf, “Plasticity of cell migration: a multiscale tuning model,” J. Cell Biol.188(1), 11–19 (2010).
[CrossRef] [PubMed]

George, S. C.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Gratton, E.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

Hoying, J. B.

N. D. Kirkpatrick, S. Andreou, J. B. Hoying, and U. Utzinger, “Live imaging of collagen remodeling during angiogenesis,” Am. J. Physiol. Heart Circ. Physiol.292(6), H3198–H3206 (2007).
[CrossRef] [PubMed]

Keating, E.

A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
[CrossRef] [PubMed]

Kirkpatrick, N. D.

N. D. Kirkpatrick, S. Andreou, J. B. Hoying, and U. Utzinger, “Live imaging of collagen remodeling during angiogenesis,” Am. J. Physiol. Heart Circ. Physiol.292(6), H3198–H3206 (2007).
[CrossRef] [PubMed]

Knaus, P.

A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
[CrossRef] [PubMed]

Kokini, K.

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
[CrossRef] [PubMed]

Kolin, D. L.

D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys.49(3), 141–164 (2007).
[CrossRef] [PubMed]

Krasieva, T.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Lindmo, T.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

Lumia, R.

R. Lumia, “A new three-dimensional connected components algorithm,” Comput. Vis. Graph. Image Process.23(2), 207–217 (1983).
[CrossRef]

Lyubovitsky, J.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Mih, J. D.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Nohe, A.

A. Nohe and N. O. Petersen, “Image correlation spectroscopy,” Sci. STKE2007(417), pl7 (2007).
[CrossRef] [PubMed]

A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
[CrossRef] [PubMed]

Otsu, N.

N. Otsu, “Threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

Petersen, N. O.

A. Nohe and N. O. Petersen, “Image correlation spectroscopy,” Sci. STKE2007(417), pl7 (2007).
[CrossRef] [PubMed]

A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
[CrossRef] [PubMed]

M. Srivastava and N. O. Petersen, “Diffusion of transferrin receptor clusters,” Biophys. Chem.75(3), 201–211 (1998).
[CrossRef] [PubMed]

Putnam, A. J.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Raub, C. B.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Robinson, J. P.

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
[CrossRef] [PubMed]

Roeder, B. A.

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
[CrossRef] [PubMed]

Sabeh, F.

F. Sabeh, R. Shimizu-Hirota, and S. J. Weiss, “Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited,” J. Cell Biol.185(1), 11–19 (2009).
[CrossRef] [PubMed]

Shimizu-Hirota, R.

F. Sabeh, R. Shimizu-Hirota, and S. J. Weiss, “Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited,” J. Cell Biol.185(1), 11–19 (2009).
[CrossRef] [PubMed]

Squier, J. A.

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc.200(1), 14–25 (2000).
[CrossRef] [PubMed]

Srivastava, M.

M. Srivastava and N. O. Petersen, “Diffusion of transferrin receptor clusters,” Biophys. Chem.75(3), 201–211 (1998).
[CrossRef] [PubMed]

Sturgis, J. E.

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
[CrossRef] [PubMed]

Suresh, V.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Tromberg, B. J.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

Underhill, T. M.

A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
[CrossRef] [PubMed]

Unruh, J.

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

Utzinger, U.

N. D. Kirkpatrick, S. Andreou, J. B. Hoying, and U. Utzinger, “Live imaging of collagen remodeling during angiogenesis,” Am. J. Physiol. Heart Circ. Physiol.292(6), H3198–H3206 (2007).
[CrossRef] [PubMed]

Voytik-Harbin, S. L.

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
[CrossRef] [PubMed]

Weiss, S. J.

F. Sabeh, R. Shimizu-Hirota, and S. J. Weiss, “Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited,” J. Cell Biol.185(1), 11–19 (2009).
[CrossRef] [PubMed]

Wilson, K. R.

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc.200(1), 14–25 (2000).
[CrossRef] [PubMed]

Wiseman, P. W.

D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys.49(3), 141–164 (2007).
[CrossRef] [PubMed]

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc.200(1), 14–25 (2000).
[CrossRef] [PubMed]

Wolf, K.

P. Friedl and K. Wolf, “Plasticity of cell migration: a multiscale tuning model,” J. Cell Biol.188(1), 11–19 (2010).
[CrossRef] [PubMed]

Am. J. Physiol. Heart Circ. Physiol.

N. D. Kirkpatrick, S. Andreou, J. B. Hoying, and U. Utzinger, “Live imaging of collagen remodeling during angiogenesis,” Am. J. Physiol. Heart Circ. Physiol.292(6), H3198–H3206 (2007).
[CrossRef] [PubMed]

Biophys. Chem.

M. Srivastava and N. O. Petersen, “Diffusion of transferrin receptor clusters,” Biophys. Chem.75(3), 201–211 (1998).
[CrossRef] [PubMed]

Biophys. J.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J.92(6), 2212–2222 (2007).
[CrossRef] [PubMed]

C. B. Raub, J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, B. J. Tromberg, and S. C. George, “Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties,” Biophys. J.94(6), 2361–2373 (2008).
[CrossRef] [PubMed]

Cell Biochem. Biophys.

D. L. Kolin and P. W. Wiseman, “Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells,” Cell Biochem. Biophys.49(3), 141–164 (2007).
[CrossRef] [PubMed]

Comput. Vis. Graph. Image Process.

R. Lumia, “A new three-dimensional connected components algorithm,” Comput. Vis. Graph. Image Process.23(2), 207–217 (1983).
[CrossRef]

IEEE Trans. Syst. Man Cybern.

N. Otsu, “Threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

J. Biomech. Eng.

B. A. Roeder, K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin, “Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure,” J. Biomech. Eng.124(2), 214–222 (2002).
[CrossRef] [PubMed]

J. Cell Biol.

P. Friedl and K. Wolf, “Plasticity of cell migration: a multiscale tuning model,” J. Cell Biol.188(1), 11–19 (2010).
[CrossRef] [PubMed]

F. Sabeh, R. Shimizu-Hirota, and S. J. Weiss, “Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid movement revisited,” J. Cell Biol.185(1), 11–19 (2009).
[CrossRef] [PubMed]

J. Cell Sci.

A. Nohe, E. Keating, T. M. Underhill, P. Knaus, and N. O. Petersen, “Dynamics and interaction of caveolin-1 isoforms with BMP-receptors,” J. Cell Sci.118(3), 643–650 (2005).
[CrossRef] [PubMed]

J. Microsc.

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc.200(1), 14–25 (2000).
[CrossRef] [PubMed]

Sci. STKE

A. Nohe and N. O. Petersen, “Image correlation spectroscopy,” Sci. STKE2007(417), pl7 (2007).
[CrossRef] [PubMed]

Other

D. Kolin, “ICS Tutorial” (Cell Migration Consortium, 2006), http://www.cellmigration.org/resource/imaging/imaging_resources.shtml#software .

J. S. Lim, Two-Dimensional Signal and Image Processing, Prentice Hall Signal Processing Series (Prentice Hall, Englewood Cliffs, N.J., 1990), pp. xvi, 694.

K. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graphics Gems IV (Academic Press Professional, 1994), pp. 474–485.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of Image Correlation Spectroscopy and the dependence of the autocorrelation on orientation. The image with fibers oriented horizontally and its autocorrelation is shown. The Gaussian fit of the centrally cropped ACF is to the right with the wireframe representing the fit.

Fig. 2
Fig. 2

Flow chart and illustration of pore finding algorithm. (A) Steps entailed in finding the pore distribution of an image. The algorithm produces a list of pore centers and the associated diameters. (B) The image is convolved with a circular mask. To find the pore distribution, circular masks with different diameters are generated. Zeros of the convolved image are identified which corresponds to the points where the circular mask fits into the pore. (C) Connected component labeling is used to identify independent regions that have an area smaller than a set threshold. For illustrative purpose, centers of those regions are marked with crosses (C left) and the corresponding circular pores are drawn in the subfigure to the right. (D) Simulated image with all pores identified. (E) Pore diameters [pixel] follow a lognormal distribution.

Fig. 3
Fig. 3

Steps involved in ICS and pore distribution analysis of measured data. The pore finding routine and ICS is applied on images after contrast adjustment, adaptive histogram equalization and thresholding. Image (1) illustrates the raw data, (2) the histogram adjusted data, (3) the thresholded image, and (4) illustrates the pore centers and diameters.

Fig. 4
Fig. 4

Images of virtually computed fiber matrices under different simulation conditions. The top row contains images of different widths with a constant mean fiber density and length. The middle row has images of different fiber densities with constant mean width and length. The bottom row illustrates images of different lengths with constant mean fiber density and width.

Fig. 5
Fig. 5

ICS parameter sensitivity analysis. The top left figure illustrates sensitivity of fit amplitude with fill factor, width and length. Symbols represent and average of 10 simulations. Standard deviation is also plotted but often smaller than the symbol labeling the plot. The amplitude is highly correlated with fill factor. The top right figure illustrates the variation of average sigma, with sigma shown to be highly correlated with fiber width. The average sigma is the mean of sigma on the minor and major axis. The bottom left figure illustrates the offset with offset shown to be highly correlated with fill factor. The bottom right figure illustrates ellipticity to be highly correlated with fiber length if the fibers have a preferred orientation. Orientations follow uniform distributions from [-5°, 5°] (Orient = 5) to [-80°, 80°] (Orient = 80). Uniform distribution of [-80°, 80°] indicates almost randomly oriented fibers and the ellipticity (σMm) is almost flat around 1.

Fig. 6
Fig. 6

Correlation of ICS amplitude with average pore size of simulated (left) and microscopy data (right). The microscopy data (n = 15) spans a pore size range that is much smaller than the simulated data.

Tables (1)

Tables Icon

Table 1 Simulation variables

Metrics