Abstract

Dipping objectives were tested for multi-photon laser scanning microscopy, since their large working distances are advantageous for thick specimens and the absence of a coverslip facilitates examination of living material. Images of fluorescent bead specimens, particularly at wavelengths greater than 850 nm showed defects consistent with spherical aberration. Substituting methanol for water as the immersion medium surrounding the beads corrected these defects and produced an increase in fluorescence signal intensity. The same immersion method was applied to two representative biological samples of fixed tissue: mouse brain labeled with FITC for tubulin and mouse gut in which the Peyer’s patches were labeled with Texas Red bilosomes. Tissue morphology was well preserved by methanol immersion of both tissues; the two-photon-excited fluorescence signal was six times higher than in water and the depth of penetration of useful imaging was doubled. No modification of the microscope was needed except the provision of a ring to retain a sufficient depth of methanol for imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  3. M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Two-photon tissue imaging: seeing the immune system in a fresh light,” Nat. Rev. Immunol.2(11), 872–880 (2002).
    [CrossRef] [PubMed]
  4. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003).
    [CrossRef] [PubMed]
  5. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
    [CrossRef] [PubMed]
  6. M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
    [CrossRef] [PubMed]
  7. C. J. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt.30(25), 3563–3568 (1991).
    [CrossRef] [PubMed]
  8. F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt.28(12), 2297–2303 (1989).
    [CrossRef] [PubMed]
  9. G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
    [CrossRef] [PubMed]
  10. W. Denk, D. W. Piston, and W. W. Webb, “Multi-photon molecular excitation in laser-scanning microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawlay, ed. (Springer Science, 2006), pp. 535–549.
  11. F. J. Kao, M. K. Huang, Y. S. Wang, S. L. Huang, M. K. Lee, and C. K. Sun, “Two-photon optical-beam-induced current imaging of indium gallium nitride blue light-emitting diodes,” Opt. Lett.24(20), 1407–1409 (1999).
    [CrossRef] [PubMed]
  12. C. J. R. Sheppard, “Aberrations in high aperture conventional and confocal imaging systems,” Appl. Opt.27(22), 4782–4786 (1988).
    [CrossRef] [PubMed]
  13. T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc.154(3), 243–256 (1989).
    [CrossRef]
  14. C. J. R. Sheppard and C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik (Stuttg.)87(1), 34–38 (1991).
  15. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
    [CrossRef]
  16. D. Ganic, X. Gan, and M. Gu, “Reduced effects of spherical aberration on penetration depth under two-photon excitation,” Appl. Opt.39(22), 3945–3947 (2000).
    [CrossRef] [PubMed]
  17. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
    [CrossRef] [PubMed]
  18. H. Jacobsen, P. Hanninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc.176(3), 226–230 (1994).
    [CrossRef]
  19. G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martínez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express17(16), 13810–13818 (2009).
    [CrossRef] [PubMed]
  20. M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N, 74290N-12 (2009).
    [CrossRef]
  21. J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
    [CrossRef] [PubMed]
  22. D.-S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc.197(3), 274–284 (2000).
    [CrossRef] [PubMed]
  23. C. J. R. Sheppard, “Comment on ‘Analysis of spherical aberration of a water immersion objective: application to specimens with refractive index 1.33-1.40’, D.-S. Wan, M. Rajadhyaksha and R. H. Webb, J. Microsc. 197, 274-284 (2000),” J. Microsc.200(3), 177–178 (2000).
    [CrossRef] [PubMed]
  24. M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
    [CrossRef] [PubMed]
  25. J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
    [CrossRef] [PubMed]
  26. F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
    [CrossRef] [PubMed]
  27. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
    [CrossRef] [PubMed]
  28. N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012).
    [CrossRef] [PubMed]
  29. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
    [CrossRef] [PubMed]
  30. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003).
    [CrossRef] [PubMed]

2012 (3)

G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
[CrossRef] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012).
[CrossRef] [PubMed]

2009 (4)

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

G. Saavedra, I. Escobar, R. Martínez-Cuenca, E. Sánchez-Ortiga, and M. Martínez-Corral, “Reduction of spherical-aberration impact in microscopy by wavefront coding,” Opt. Express17(16), 13810–13818 (2009).
[CrossRef] [PubMed]

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
[CrossRef] [PubMed]

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N, 74290N-12 (2009).
[CrossRef]

2007 (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

2006 (2)

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Two-photon tissue imaging: seeing the immune system in a fresh light,” Nat. Rev. Immunol.2(11), 872–880 (2002).
[CrossRef] [PubMed]

2001 (1)

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

2000 (4)

D.-S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc.197(3), 274–284 (2000).
[CrossRef] [PubMed]

C. J. R. Sheppard, “Comment on ‘Analysis of spherical aberration of a water immersion objective: application to specimens with refractive index 1.33-1.40’, D.-S. Wan, M. Rajadhyaksha and R. H. Webb, J. Microsc. 197, 274-284 (2000),” J. Microsc.200(3), 177–178 (2000).
[CrossRef] [PubMed]

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

D. Ganic, X. Gan, and M. Gu, “Reduced effects of spherical aberration on penetration depth under two-photon excitation,” Appl. Opt.39(22), 3945–3947 (2000).
[CrossRef] [PubMed]

1999 (1)

1994 (1)

H. Jacobsen, P. Hanninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc.176(3), 226–230 (1994).
[CrossRef]

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

1991 (2)

C. J. R. Sheppard and C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik (Stuttg.)87(1), 34–38 (1991).

C. J. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt.30(25), 3563–3568 (1991).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1989 (2)

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc.154(3), 243–256 (1989).
[CrossRef]

F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive index of some mammalian tissues using a fiber optic cladding method,” Appl. Opt.28(12), 2297–2303 (1989).
[CrossRef] [PubMed]

1988 (1)

Acker, H.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Alexander, J.

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

Amor, R.

G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
[CrossRef] [PubMed]

Amos, W. B.

G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
[CrossRef] [PubMed]

Beaurepaire, E.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Berchner-Pfannschmidt, U.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Bestvater, F.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Betzig, E.

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012).
[CrossRef] [PubMed]

Bolin, F. P.

Booth, M. J.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
[CrossRef] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Botcherby, E. J.

Burns, D.

Cahalan, M. D.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Two-photon tissue imaging: seeing the immune system in a fresh light,” Nat. Rev. Immunol.2(11), 872–880 (2002).
[CrossRef] [PubMed]

Carlini, A. R.

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc.154(3), 243–256 (1989).
[CrossRef]

Carter, K. C.

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

Cogswell, C. J.

C. J. R. Sheppard and C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik (Stuttg.)87(1), 34–38 (1991).

Combettes, L.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Cui, M.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Débarre, D.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Demenikov, M.

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N, 74290N-12 (2009).
[CrossRef]

Dempster, J.

G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
[CrossRef] [PubMed]

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Escobar, I.

Fabre, A.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Ference, R. J.

Ferro, V. A.

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

Feurer, T.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Gan, X.

Ganic, D.

Germain, R. N.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Girkin, J. M.

Gu, M.

Hacker, M.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Hanninen, P.

H. Jacobsen, P. Hanninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc.176(3), 226–230 (1994).
[CrossRef]

Harvey, A. R.

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N, 74290N-12 (2009).
[CrossRef]

Hasan, M. T.

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Hell, S. W.

H. Jacobsen, P. Hanninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc.176(3), 226–230 (1994).
[CrossRef]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

Huang, M. K.

Huang, S. L.

Jacobsen, H.

H. Jacobsen, P. Hanninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc.176(3), 226–230 (1994).
[CrossRef]

Ji, N.

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012).
[CrossRef] [PubMed]

Juskaitis, R.

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Kao, F. J.

Kawata, S.

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Lee, M. K.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Mann, J. F.

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

Marsh, P. N.

Martínez-Corral, M.

Martínez-Cuenca, R.

McConnell, G.

G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
[CrossRef] [PubMed]

Miller, M. J.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Two-photon tissue imaging: seeing the immune system in a fresh light,” Nat. Rev. Immunol.2(11), 872–880 (2002).
[CrossRef] [PubMed]

Mullen, A. B.

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

Neil, M. A.

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Norris, G.

G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
[CrossRef] [PubMed]

Parker, I.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Two-photon tissue imaging: seeing the immune system in a fresh light,” Nat. Rev. Immunol.2(11), 872–880 (2002).
[CrossRef] [PubMed]

Pena, A. M.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Porwol, T.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Preuss, L. E.

Rajadhyaksha, M.

D.-S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc.197(3), 274–284 (2000).
[CrossRef] [PubMed]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Saavedra, G.

Sánchez-Ortiga, E.

Sato, T. R.

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012).
[CrossRef] [PubMed]

Schanne-Klein, M. C.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Shakir, E.

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

Sheppard, C. J.

Sheppard, C. J. R.

C. J. R. Sheppard, “Comment on ‘Analysis of spherical aberration of a water immersion objective: application to specimens with refractive index 1.33-1.40’, D.-S. Wan, M. Rajadhyaksha and R. H. Webb, J. Microsc. 197, 274-284 (2000),” J. Microsc.200(3), 177–178 (2000).
[CrossRef] [PubMed]

C. J. R. Sheppard and C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik (Stuttg.)87(1), 34–38 (1991).

C. J. R. Sheppard, “Aberrations in high aperture conventional and confocal imaging systems,” Appl. Opt.27(22), 4782–4786 (1988).
[CrossRef] [PubMed]

Soini, E.

H. Jacobsen, P. Hanninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc.176(3), 226–230 (1994).
[CrossRef]

Spiess, E.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Srinivas, S.

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Stobrawa, G.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sun, C. K.

Supatto, W.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Tanaka, T.

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

Tang, J.

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Taylor, R. C.

Theer, P.

Tordjmann, T.

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Wan, D.-S.

D.-S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc.197(3), 274–284 (2000).
[CrossRef] [PubMed]

Wang, Y. S.

Watanabe, T.

Webb, R. H.

D.-S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc.197(3), 274–284 (2000).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei, S. H.

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Two-photon tissue imaging: seeing the immune system in a fresh light,” Nat. Rev. Immunol.2(11), 872–880 (2002).
[CrossRef] [PubMed]

Wilson, T.

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
[CrossRef] [PubMed]

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc.154(3), 243–256 (1989).
[CrossRef]

Wotzlaw, C.

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Appl. Opt. (4)

J. Biomed. Opt. (1)

M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001).
[CrossRef] [PubMed]

J. Microsc. (8)

G. Norris, R. Amor, J. Dempster, W. B. Amos, and G. McConnell, “A promising new wavelength region for three-photon fluorescence microscopy of live cells,” J. Microsc.246(3), 266–273 (2012).
[CrossRef] [PubMed]

T. Wilson and A. R. Carlini, “The effect of aberrations on the axial response of confocal imaging systems,” J. Microsc.154(3), 243–256 (1989).
[CrossRef]

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

H. Jacobsen, P. Hanninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc.176(3), 226–230 (1994).
[CrossRef]

D.-S. Wan, M. Rajadhyaksha, and R. H. Webb, “Analysis of spherical aberration of a water immersion objective: application to specimens with refractive indices 1.33-1.40,” J. Microsc.197(3), 274–284 (2000).
[CrossRef] [PubMed]

C. J. R. Sheppard, “Comment on ‘Analysis of spherical aberration of a water immersion objective: application to specimens with refractive index 1.33-1.40’, D.-S. Wan, M. Rajadhyaksha and R. H. Webb, J. Microsc. 197, 274-284 (2000),” J. Microsc.200(3), 177–178 (2000).
[CrossRef] [PubMed]

M. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000).
[CrossRef] [PubMed]

F. Bestvater, E. Spiess, G. Stobrawa, M. Hacker, T. Feurer, T. Porwol, U. Berchner-Pfannschmidt, C. Wotzlaw, and H. Acker, “Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging,” J. Microsc.208(2), 108–115 (2002).
[CrossRef] [PubMed]

Nat. Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005).
[CrossRef] [PubMed]

D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3(1), 47–53 (2006).
[CrossRef] [PubMed]

Nat. Rev. Immunol. (1)

M. D. Cahalan, I. Parker, S. H. Wei, and M. J. Miller, “Two-photon tissue imaging: seeing the immune system in a fresh light,” Nat. Rev. Immunol.2(11), 872–880 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Optik (Stuttg.) (1)

C. J. R. Sheppard and C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik (Stuttg.)87(1), 34–38 (1991).

Philos. Transact. A Math. Phys. Eng. Sci. (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A.109(1), 22–27 (2012).
[CrossRef] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

J. Tang, R. N. Germain, and M. Cui, “Superpenetration optical microscopy by iterative multiphoton adaptive compensation technique,” Proc. Natl. Acad. Sci. U.S.A.109(22), 8434–8439 (2012).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Demenikov and A. R. Harvey, “A technique to remove image artefacts in optical systems with wavefront coding,” Proc. SPIE7429, 74290N, 74290N-12 (2009).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Vaccine (1)

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander, and V. A. Ferro, “Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection,” Vaccine27(27), 3643–3649 (2009).
[CrossRef] [PubMed]

Other (1)

W. Denk, D. W. Piston, and W. W. Webb, “Multi-photon molecular excitation in laser-scanning microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawlay, ed. (Springer Science, 2006), pp. 535–549.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Immersion well tailored to a water dipping lens for use with methanol immersion (MI).

Fig. 2
Fig. 2

XZ MPLSM images and inset linescans through the centre of a 6 μm diameter fluorescent bead imaged with an excitation wavelength of λ = 750 nm for (a) MI and (b) WI, and imaged with an excitation wavelength of λ = 1000 nm for (c) MI and (d) WI, accompanied by the line intensity plots at the centre of the bead. The detector gain was adjusted in order to provide illustrative examples. For all data following this figure, the detector gain was kept constant during imaging with WI and MI.

Fig. 3
Fig. 3

Average error from the Gaussian fit to the intensity line scans of 6 μm diameter fluorescent beads as a function of excitation wavelength. These data are accompanied by the standard error for each data point (n = 5 beads at each wavelength).

Fig. 4
Fig. 4

Brain section. (a) Measured average fluorescence signal intensity of the entire images as a function of wavelength for WI and MI. These data are accompanied by the standard error for each data point (n = 5 images at each wavelength). Note that the low dynamic range of the graph is solely due to the averaging of the entire image. XY images of brain section with (b) MI and (c) WI using the same gain level, excitation wavelength of λ = 950 nm, average power of 20 mW at the specimen plane, 2 Hz capture rate, a box size of 512 × 512 pixels and n = 8 Kalman averaging.

Fig. 5
Fig. 5

Gut section - XZ scan showing depth penetration attainable with (a) WI and (b) MI. More than a two-fold increase in depth was observed when using MI at the same excitation and image capture parameters. (λ = 1000 nm, 20 mW, 2 fps, 512 × 512 pixels, n = 8 Kalman averages).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

φ=tk( n 2 n 1 )[ 1+ 2 n 1 n 2 s 2 +2( n 2 + n 1 ) n 1 2 n 2 3 s 4 +... ]

Metrics