Abstract

A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006).
    [CrossRef] [PubMed]
  2. T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010).
    [CrossRef]
  3. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007).
    [CrossRef] [PubMed]
  4. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  5. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett.29(17), 1974–1976 (2004).
    [CrossRef] [PubMed]
  6. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
    [CrossRef] [PubMed]
  7. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
    [CrossRef] [PubMed]
  8. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett.28(14), 1224–1226 (2003).
    [CrossRef] [PubMed]
  9. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46(1), 010503 (2007).
    [CrossRef]
  10. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
    [CrossRef]
  11. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
    [CrossRef]
  12. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
    [CrossRef] [PubMed]
  13. M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express18(9), 9088–9097 (2010).
    [CrossRef] [PubMed]
  14. Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15(26), 17819–17826 (2007).
    [CrossRef] [PubMed]
  15. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15(26), 17891–17901 (2007).
    [CrossRef] [PubMed]
  16. S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express18(9), 9474–9485 (2010).
    [CrossRef] [PubMed]
  17. M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett.35(4), 466–468 (2010).
    [CrossRef] [PubMed]
  18. Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
    [CrossRef] [PubMed]
  19. J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express16(25), 20834–20847 (2008).
    [CrossRef] [PubMed]
  20. M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express19(11), 10471–10484 (2011).
    [CrossRef] [PubMed]
  21. S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34(22), 3577–3579 (2009).
    [CrossRef] [PubMed]
  22. Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008).
    [CrossRef] [PubMed]
  23. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol.25(11), 3563–3574 (2007).
    [CrossRef]
  24. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett.32(2), 115–117 (2007).
    [CrossRef] [PubMed]
  25. L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
    [CrossRef]
  26. L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
    [CrossRef]
  27. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express19(18), 17585–17590 (2011).
    [CrossRef] [PubMed]
  28. T. J. Mathews and B. E. Hamilton, “Mean age of mother, 1970-2000,” Natl. Vital Stat. Rep.51(1), 1–13 (2002).
    [PubMed]
  29. R. F. Casper, “It’s time to pay attention to the endometrium,” Fertil. Steril.96(3), 519–521 (2011).
    [CrossRef] [PubMed]
  30. B. A. Lessey, “Assessment of endometrial receptivity,” Fertil. Steril.96(3), 522–529 (2011).
    [CrossRef] [PubMed]
  31. S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
    [CrossRef] [PubMed]
  32. N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
    [CrossRef] [PubMed]
  33. F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
    [CrossRef] [PubMed]
  34. C. Rajapakse, F. Wang, T. C. Y. Tang, P. J. Reece, S. G. Leon-Saval, and A. Argyros, “Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber,” Opt. Express20(10), 11232–11240 (2012).
    [CrossRef] [PubMed]
  35. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011).
    [CrossRef] [PubMed]

2012 (2)

N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
[CrossRef] [PubMed]

C. Rajapakse, F. Wang, T. C. Y. Tang, P. J. Reece, S. G. Leon-Saval, and A. Argyros, “Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber,” Opt. Express20(10), 11232–11240 (2012).
[CrossRef] [PubMed]

2011 (9)

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011).
[CrossRef] [PubMed]

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

R. F. Casper, “It’s time to pay attention to the endometrium,” Fertil. Steril.96(3), 519–521 (2011).
[CrossRef] [PubMed]

B. A. Lessey, “Assessment of endometrial receptivity,” Fertil. Steril.96(3), 522–529 (2011).
[CrossRef] [PubMed]

S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
[CrossRef] [PubMed]

M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express19(11), 10471–10484 (2011).
[CrossRef] [PubMed]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express19(18), 17585–17590 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (2)

2008 (4)

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express16(25), 20834–20847 (2008).
[CrossRef] [PubMed]

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
[CrossRef]

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

2007 (6)

2006 (3)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

2002 (1)

T. J. Mathews and B. E. Hamilton, “Mean age of mother, 1970-2000,” Natl. Vital Stat. Rep.51(1), 1–13 (2002).
[PubMed]

Afshar, S.

Agger, C.

Argyros, A.

Baker, J. R.

Bang, O.

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express19(18), 17585–17590 (2011).
[CrossRef] [PubMed]

M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express19(11), 10471–10484 (2011).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express16(25), 20834–20847 (2008).
[CrossRef] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett.32(5), 460–462 (2007).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

Berghmans, F.

Bise, R. T.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
[CrossRef]

Bjarklev, A.

Bouwmans, G.

Carlsen, A.

Casper, R. F.

R. F. Casper, “It’s time to pay attention to the endometrium,” Fertil. Steril.96(3), 519–521 (2011).
[CrossRef] [PubMed]

Chaudhari, C.

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

Demokan, M. S.

Du, H.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett.35(4), 466–468 (2010).
[CrossRef] [PubMed]

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
[CrossRef]

Dufva, M.

Ebendorff-Heidepriem, H.

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34(22), 3577–3579 (2009).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

Emiliyanov, G.

Englich, F. V.

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

Folkenberg, J. R.

Foo, T. C.

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

Francois, A.

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010).
[CrossRef]

Frosz, M. H.

Geschke, O.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Hamilton, B. E.

T. J. Mathews and B. E. Hamilton, “Mean age of mother, 1970-2000,” Natl. Vital Stat. Rep.51(1), 1–13 (2002).
[PubMed]

Han, Y.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett.35(4), 466–468 (2010).
[CrossRef] [PubMed]

Hannan, N. J.

N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
[CrossRef] [PubMed]

S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
[CrossRef] [PubMed]

Hansen, O.

Hansen, T. P.

Heng, S.

S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010).
[CrossRef]

Heuck, M.

Hoffmann, P.

Hoiby, P. E.

Høiby, P. E.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Jaroszewicz, L. R.

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

Jensen, J. B.

Jin, W.

Kanka, J.

M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett.35(4), 466–468 (2010).
[CrossRef] [PubMed]

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
[CrossRef]

Khaing Oo, M. K.

Kito, C.

Kjaer, E. M.

Knight, J. C.

Leon-Saval, S. G.

Lessey, B. A.

B. A. Lessey, “Assessment of endometrial receptivity,” Fertil. Steril.96(3), 522–529 (2011).
[CrossRef] [PubMed]

Liao, M.

Lindvold, L.

Marc, P.

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

Mathews, T. J.

T. J. Mathews and B. E. Hamilton, “Mean age of mother, 1970-2000,” Natl. Vital Stat. Rep.51(1), 1–13 (2002).
[PubMed]

Mergo, P.

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

Monro, T. M.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011).
[CrossRef] [PubMed]

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010).
[CrossRef]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express18(9), 9474–9485 (2010).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34(22), 3577–3579 (2009).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15(26), 17891–17901 (2007).
[CrossRef] [PubMed]

Moore, R. C.

Murawski, M.

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

Myaing, M. T.

Nasilowski, T.

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

Nie, G.

N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
[CrossRef] [PubMed]

S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
[CrossRef] [PubMed]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Norris, T. B.

Ohishi, Y.

Oo, M. K. K.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Ott, J. R.

Pedersen, L. H.

Peterka, P.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
[CrossRef]

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46(1), 010503 (2007).
[CrossRef]

Pristinski, D.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Qin, G.

Rainzcuk, A.

N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
[CrossRef] [PubMed]

Rajapakse, C.

Rasmussen, P. D.

Reece, P. J.

Richardson, A. C.

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46(1), 010503 (2007).
[CrossRef]

Riishede, J.

Rindorf, L.

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Rombauts, L. J.

N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
[CrossRef] [PubMed]

Rombauts, L. J. F.

S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
[CrossRef] [PubMed]

Ruan, Y.

Russell, P. S. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. J. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett.28(14), 1224–1226 (2003).
[CrossRef] [PubMed]

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46(1), 010503 (2007).
[CrossRef]

Salamonsen, L. A.

N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
[CrossRef] [PubMed]

S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
[CrossRef] [PubMed]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

Schartner, E. P.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010).
[CrossRef]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

Stasiewicz, K.

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

Stefani, A.

Sukhishvili, S.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

M. K. Khaing Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett.35(4), 466–468 (2010).
[CrossRef] [PubMed]

Sumby, C. J.

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

Suzuki, T.

Szymanski, M.

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, P. Mergo, W. Urbanczyk, F. Berghmans, and H. Thienpont, “Low-loss patch cords by effective splicing of various photonic crystal fibers with standard single mode fiber,” J. Lightwave Technol.29(19), 2940–2946 (2011).
[CrossRef]

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

Tan, S.

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Tang, T. C. Y.

Thienpont, H.

Thomas, T.

Urbanczyk, W.

Wadsworth, W. J.

Wang, F.

Wang, Y.

Warren-Smith, S. C.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46(1), 010503 (2007).
[CrossRef]

White, R. T.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011).
[CrossRef] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006).
[CrossRef] [PubMed]

Xiao, L.

Yan, X.

Ye, J. Y.

Yuan, W.

Zhang, W. Q.

Zhao, C.-L.

Zhu, Y.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

Y. Han, S. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. (Deerfield Beach Fla.)22(24), 2647–2651 (2010).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem.385(8), 1370–1375 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.78(12), 3859–3874 (2006).
[CrossRef] [PubMed]

Fertil. Steril. (2)

R. F. Casper, “It’s time to pay attention to the endometrium,” Fertil. Steril.96(3), 519–521 (2011).
[CrossRef] [PubMed]

B. A. Lessey, “Assessment of endometrial receptivity,” Fertil. Steril.96(3), 522–529 (2011).
[CrossRef] [PubMed]

Hum. Reprod. (1)

S. Heng, N. J. Hannan, L. J. F. Rombauts, L. A. Salamonsen, and G. Nie, “PC6 levels in uterine lavage are closely associated with uterine receptivity and significantly lower in a subgroup of women with unexplained infertility,” Hum. Reprod.26(4), 840–846 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. S. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys.103(10), 103108 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Natl. Vital Stat. Rep. (1)

T. J. Mathews and B. E. Hamilton, “Mean age of mother, 1970-2000,” Natl. Vital Stat. Rep.51(1), 1–13 (2002).
[PubMed]

Opt. Commun. (1)

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281(1), 55–60 (2008).
[CrossRef]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46(1), 010503 (2007).
[CrossRef]

Opt. Express (12)

L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

M. Liao, C. Chaudhari, X. Yan, G. Qin, C. Kito, T. Suzuki, and Y. Ohishi, “A suspended core nanofiber with unprecedented large diameter ratio of holey region to core,” Opt. Express18(9), 9088–9097 (2010).
[CrossRef] [PubMed]

Y. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express15(26), 17891–17901 (2007).
[CrossRef] [PubMed]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation,” Opt. Express18(9), 9474–9485 (2010).
[CrossRef] [PubMed]

J. R. Ott, M. Heuck, C. Agger, P. D. Rasmussen, and O. Bang, “Label-free and selective nonlinear fiber-optical biosensing,” Opt. Express16(25), 20834–20847 (2008).
[CrossRef] [PubMed]

M. H. Frosz, A. Stefani, and O. Bang, “Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing,” Opt. Express19(11), 10471–10484 (2011).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

C. Rajapakse, F. Wang, T. C. Y. Tang, P. J. Reece, S. G. Leon-Saval, and A. Argyros, “Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber,” Opt. Express20(10), 11232–11240 (2012).
[CrossRef] [PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express19(18), 17585–17590 (2011).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16(6), 343–356 (2010).
[CrossRef]

Opt. Lett. (6)

Opto-Electron. Rev. (1)

L. R. Jaroszewicz, M. Murawski, T. Nasilowski, K. Stasiewicz, P. Marc, M. Szymanski, and P. Mergo, “Methodology of splicing large air filling factor suspended core photonic crystal fibres,” Opto-Electron. Rev.19(2), 256–259 (2011).
[CrossRef]

Reprod. Sci. (1)

N. J. Hannan, G. Nie, A. Rainzcuk, L. J. Rombauts, and L. A. Salamonsen, “Uterine lavage or aspirate: which view of the intrauterine environment?” Reprod. Sci.19(10), 1125–1132 (2012).
[CrossRef] [PubMed]

Sensors (Basel) (2)

F. V. Englich, T. C. Foo, A. C. Richardson, H. Ebendorff-Heidepriem, C. J. Sumby, and T. M. Monro, “Photoinduced electron transfer based ion sensing within an optical fiber,” Sensors (Basel)11(10), 9560–9572 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors (Basel)11(3), 2961–2971 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Auto-alignment experimental setup used to perform an enzyme activity assay within a suspended-core optical fiber. MO = microscope objective, CS = cover slip, DM = dichroic mirror with 50% reflection at 405 nm, LP = 405 nm long pass filter, MMF = multi-mode fiber patch cable. Blue lines indicate the propagation of the 372 nm light while red lines indicate the propagation of fluorescence when the fiber is filled with a fluorophore. Inset figures are scanning electron microscope (SEM) images of the suspended-core fiber used in these experiments. The black scale bar in the left inset SEM image is 50 µm and the white scale bar in the right inset SEM image is 2 µm.

Fig. 2
Fig. 2

Comparison of the reflected and transmitted power for 372 nm light coupled into a 2.1 μm core fiber. Results show that the position of maximum power is the same for both the reflected and transmitted power and thus reflected power can be utilized for an auto-alignment system.

Fig. 3
Fig. 3

Transmitted power measured when coupling into a 2.1 µm core suspended-core fiber when the fiber is filled with (a) air, (b) water, and (c) bis-tris buffer. Thick black lines indicate the power transmitted when the auto-alignment program was run for two seconds every 30 seconds, while thin red lines indicate the transmitted power when no active coupling was applied.

Fig. 4
Fig. 4

The sensing mechanism. The enzyme (PC6) can release a quenched 7-amino-4-methylcoumarin (AMC) molecule from the peptide substrate. When released, the AMC is no longer quenched and can emit fluorescence upon ultra-violet (UV) excitation. The rate of increase in fluorescence indicates enzyme activity, and, if calibrated, enzyme concentration.

Fig. 5
Fig. 5

Enzyme activity assay for proprotein convertase 5/6 (PC6) in 50 µL cuvettes. The concentration is shown in the legend of (a), where U = enzyme unit = µmol/min of substrate conversion. In (a) the first nine measurements were run at 20°C while the last eight were measured at 37°C. Crosses indicate measured values while lines indicate a line of best fit, separated for each temperature and PC6 concentration. The slope of the lines of best fit in (a), that is, the enzyme activity, are shown in (b).

Fig. 6
Fig. 6

(a) Example spectrum for the enzyme activity assay within the suspended-core MOF, measured 30 minutes after the first scan for the 100 U/ml sample. The black (upper) curve indicates the raw spectrum, the red (middle) curve is the reference spectrum for the substrate background (first scan, Eq. (1), the blue (lower) curve is the AMC reference spectrum (final scan, Eq. (2), and the triangles show that the determined values for βsub and βamc in Eq. (3) yield the correct spectrum. (b) The enzyme activity measured for a filled SCF where the background signal from the substrate has been subtracted.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f sub (λ)= f 1 (λ),
f amc (λ)= f 12 (λ) f 1 (λ),
λ=400 600 | f x (λ) β sub f sub (λ) β amc f amc (λ) |, x={2,11}.

Metrics