Abstract

Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
    [CrossRef] [PubMed]
  2. E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
    [CrossRef] [PubMed]
  3. T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
    [CrossRef] [PubMed]
  4. Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
    [CrossRef] [PubMed]
  5. V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, R. J. van Geuns, H. M. Garcia-Garcia, and P. W. Serruys, “Three-dimensional optical frequency domain imaging in conventional percoutaneous coronary intervention: the potential for clinical application,” Eur. Heart J. (advance access), http://eurheartj.oxfordjournals.org/content/early/2011/11/21/eurheartj.ehr409.extract .
  6. P. H. Chan, E. Alegria-Barrero, and C. Di Mario, “Tools & Techniques: Intravascular ultrasound and optical coherence tomography,” EuroIntervention7(11), 1343–1349 (2012).
    [CrossRef] [PubMed]
  7. T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
    [CrossRef] [PubMed]
  8. T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
    [CrossRef] [PubMed]
  9. B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
    [CrossRef] [PubMed]
  10. T. Okamura, “Angioplasty Summit MD” (2010). http://www.summitmd.com/pdf/pdf/1430_Safety_4_TakayukiOkamura.pdf
  11. C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).
  12. H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
    [CrossRef] [PubMed]
  13. L. G. Shapiro and G. C. Stockman, Computer Vision (Prentice-Hall Inc., 2001), Chaps. 3 and 10.
  14. M. Atiquzzaman and M. W. Akhtar, “A robust Hough transform technique for complete line segment description,” Real-Time Imaging1(6), 419–426 (1995).
    [CrossRef]
  15. Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
    [CrossRef]
  16. A. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
    [CrossRef]
  17. W. K. Pratt, Digital Image Processing (Wiley, 2001), Chap 14.
  18. T. Y. Kong and A. Rosenfeld, Topological Algorithms for Digital Image Processing (Elsevier Science, 1996), Chap 2.
  19. G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
    [CrossRef] [PubMed]
  20. G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
    [CrossRef] [PubMed]
  21. Cybernet Systems Co, Ltd., “Free 3D DICOM viewer INTAGE Realia” (2010), http://kgt.cybernet.co.jp/viz/realia/english/intage_realia.html .
  22. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
    [CrossRef] [PubMed]
  23. J. Ha, H. Yoo, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography,” Int. J. Cardiovasc. Imaging28(6), 1299–1304 (2012).
    [CrossRef] [PubMed]
  24. Global Industry Analysts, Inc., “Coronary stents - a global strategic business report (2011),” http://www.strategyr.com/Coronary_Stents_Market_Report.asp .

2012

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

P. H. Chan, E. Alegria-Barrero, and C. Di Mario, “Tools & Techniques: Intravascular ultrasound and optical coherence tomography,” EuroIntervention7(11), 1343–1349 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

J. Ha, H. Yoo, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography,” Int. J. Cardiovasc. Imaging28(6), 1299–1304 (2012).
[CrossRef] [PubMed]

2011

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

2010

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

2009

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
[CrossRef] [PubMed]

2008

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

2006

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

2003

E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
[CrossRef] [PubMed]

1995

M. Atiquzzaman and M. W. Akhtar, “A robust Hough transform technique for complete line segment description,” Real-Time Imaging1(6), 419–426 (1995).
[CrossRef]

1986

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

1979

A. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

Adriaenssens, T.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

Akasaka, T.

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Akhtar, M. W.

M. Atiquzzaman and M. W. Akhtar, “A robust Hough transform technique for complete line segment description,” Real-Time Imaging1(6), 419–426 (1995).
[CrossRef]

Alegria-Barrero, E.

P. H. Chan, E. Alegria-Barrero, and C. Di Mario, “Tools & Techniques: Intravascular ultrasound and optical coherence tomography,” EuroIntervention7(11), 1343–1349 (2012).
[CrossRef] [PubMed]

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Atiquzzaman, M.

M. Atiquzzaman and M. W. Akhtar, “A robust Hough transform technique for complete line segment description,” Real-Time Imaging1(6), 419–426 (1995).
[CrossRef]

Bartlett, L. A.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Bezerra, H. G.

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
[CrossRef] [PubMed]

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Bouma, B. E.

J. Ha, H. Yoo, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography,” Int. J. Cardiovasc. Imaging28(6), 1299–1304 (2012).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Chan, P. H.

P. H. Chan, E. Alegria-Barrero, and C. Di Mario, “Tools & Techniques: Intravascular ultrasound and optical coherence tomography,” EuroIntervention7(11), 1343–1349 (2012).
[CrossRef] [PubMed]

Coosemans, M.

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

Costa, M. A.

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
[CrossRef] [PubMed]

D’hooge, J.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

Desjardins, A. E.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Desmet, W.

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

Di Mario, C.

P. H. Chan, E. Alegria-Barrero, and C. Di Mario, “Tools & Techniques: Intravascular ultrasound and optical coherence tomography,” EuroIntervention7(11), 1343–1349 (2012).
[CrossRef] [PubMed]

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

Dubois, C.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

Farooq, V.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

Foin, N.

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

Freilich, M. I.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

García-García, H. M.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Ghilencea, L.

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

Gogas, B. D.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

Guagliumi, G.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
[CrossRef] [PubMed]

Ha, J.

J. Ha, H. Yoo, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography,” Int. J. Cardiovasc. Imaging28(6), 1299–1304 (2012).
[CrossRef] [PubMed]

Hattori, K.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Ino, Y.

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

Ishii, J.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Ishikawa, M.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Ismail, T. F.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Kan, S.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Kawai, T.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Kawamoto, T.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Kayaert, P.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

Kitabata, H.

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

Koolen, J.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Kubo, T.

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

Kume, T.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Kyono, H.

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

Larsson, M.

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

Linsday, A. C.

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

Magro, M.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

McClean, D. R.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Mont, E.

E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
[CrossRef] [PubMed]

Naruse, H.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Neishi, Y.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Ogasawara, Y.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Oh, W. Y.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Okamura, T.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Okumura, M.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Onsea, K.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

Onuma, Y.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Ormiston, J. A.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Otsu, A.

A. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

Ozaki, Y.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Prati, F.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Radu, M. D.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

Regar, E.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
[CrossRef] [PubMed]

Rollins, A. M.

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
[CrossRef] [PubMed]

Rosenberg, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Sadahira, Y.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Schaar, J. A.

E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
[CrossRef] [PubMed]

Serruys, P. W.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
[CrossRef] [PubMed]

Shishkov, M.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Simon, D. I.

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
[CrossRef] [PubMed]

Sinnaeve, P.

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

Sinnaeve, P. R.

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

Sukmawan, R.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Suter, M. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Takagi, Y.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

Tanaka, A.

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

Tanimoto, T.

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

Tearney, G. J.

J. Ha, H. Yoo, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography,” Int. J. Cardiovasc. Imaging28(6), 1299–1304 (2012).
[CrossRef] [PubMed]

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Thuesen, L.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Toyota, E.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Tyczynski, P.

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

Ughi, G. J.

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

Vakoc, B. J.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

van der Giessen, W. J.

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

van Geuns, R. J.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

Viceconte, N.

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

Virmani, R.

E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

Watanabe, N.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Waxman, S.

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

Whitbourn, R.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Wilson, D. L.

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

Windecker, S.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Wykrzykowska, J. J.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

Yoo, H.

J. Ha, H. Yoo, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography,” Int. J. Cardiovasc. Imaging28(6), 1299–1304 (2012).
[CrossRef] [PubMed]

Yoshida, K.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Am. J. Cardiol.

T. Kume, T. Akasaka, T. Kawamoto, Y. Ogasawara, N. Watanabe, E. Toyota, Y. Neishi, R. Sukmawan, Y. Sadahira, and K. Yoshida, “Assessment of coronary arterial thrombus by optical coherence tomography,” Am. J. Cardiol.97(12), 1713–1717 (2006).
[CrossRef] [PubMed]

Cardiovasc. Radiat. Med.

E. Regar, J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys, “Optical coherence tomography,” Cardiovasc. Radiat. Med.4(4), 198–204 (2003).
[CrossRef] [PubMed]

Circ. J.

T. Kubo, A. Tanaka, H. Kitabata, Y. Ino, T. Tanimoto, and T. Akasaka, “Application of optical coherence tomography in percutaneous coronary intervention,” Circ. J.76(9), 2076–2083 (2012).
[CrossRef] [PubMed]

Eur. Heart J.

Y. Ozaki, M. Okumura, T. F. Ismail, H. Naruse, K. Hattori, S. Kan, M. Ishikawa, T. Kawai, Y. Takagi, J. Ishii, F. Prati, and P. W. Serruys, “The fate of incomplete stent apposition with drug-eluting stents: an optical coherence tomography-based natural history study,” Eur. Heart J.31(12), 1470–1476 (2010).
[CrossRef] [PubMed]

EuroIntervention

P. H. Chan, E. Alegria-Barrero, and C. Di Mario, “Tools & Techniques: Intravascular ultrasound and optical coherence tomography,” EuroIntervention7(11), 1343–1349 (2012).
[CrossRef] [PubMed]

C. Di Mario, W. J. van der Giessen, N. Foin, T. Adriaenssens, P. Tyczynski, L. Ghilencea, N. Viceconte, and A. C. Linsday, “Optical coherence tomography for guidance in bifurcation lesion treatment,” EuroIntervention6(1), 99–106 (2011).

IEEE Trans. Syst. Man Cybern.

A. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern.9(1), 62–66 (1979).
[CrossRef]

Int. J. Cardiol.

B. D. Gogas, V. Farooq, Y. Onuma, M. Magro, M. D. Radu, R. J. van Geuns, E. Regar, and P. W. Serruys, “3-dimensional optical frequency domain imaging for the evaluation of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction,” Int. J. Cardiol.151(1), 103–105 (2011).
[CrossRef] [PubMed]

Int. J. Cardiovasc. Imaging

G. J. Ughi, T. Adriaenssens, K. Onsea, P. Kayaert, C. Dubois, P. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic segmentation of in-vivo intra-coronary optical coherence tomography images to assess stent strut apposition and coverage,” Int. J. Cardiovasc. Imaging28(2), 229–241 (2012).
[CrossRef] [PubMed]

J. Ha, H. Yoo, G. J. Tearney, and B. E. Bouma, “Compensation of motion artifacts in intracoronary optical frequency domain imaging and optical coherence tomography,” Int. J. Cardiovasc. Imaging28(6), 1299–1304 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt.

G. J. Ughi, T. Adriaenssens, M. Larsson, C. Dubois, P. R. Sinnaeve, M. Coosemans, W. Desmet, and J. D’hooge, “Automatic three-dimensional registration of intravascular optical coherence tomography images,” J. Biomed. Opt.17(2), 026005 (2012).
[CrossRef] [PubMed]

JACC Cardiovasc. Imaging

G. J. Tearney, S. Waxman, M. Shishkov, B. J. Vakoc, M. J. Suter, M. I. Freilich, A. E. Desjardins, W. Y. Oh, L. A. Bartlett, M. Rosenberg, and B. E. Bouma, “Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging,” JACC Cardiovasc. Imaging1(6), 752–761 (2008).
[CrossRef] [PubMed]

JACC Cardiovasc. Interv.

T. Okamura, Y. Onuma, H. M. García-García, E. Regar, J. J. Wykrzykowska, J. Koolen, L. Thuesen, S. Windecker, R. Whitbourn, D. R. McClean, J. A. Ormiston, P. W. Serruys, and ABSORB Cohort B Investigators, “3-Dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification,” JACC Cardiovasc. Interv.3(8), 836–844 (2010).
[CrossRef] [PubMed]

H. G. Bezerra, M. A. Costa, G. Guagliumi, A. M. Rollins, and D. I. Simon, “Intracoronary optical coherence tomography: a comprehensive review clinical and research applications,” JACC Cardiovasc. Interv.2(11), 1035–1046 (2009).
[CrossRef] [PubMed]

Lancet

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Proc. SPIE

Z. Wang, H. Kyono, H. G. Bezerra, D. L. Wilson, M. A. Costa, and A. M. Rollins, “Automatic segmentation of intravascular optical coherence tomography images facilitating quantitative diagnosis of atherosclerosis,” Proc. SPIE7889, 78890N, 78890N-7 (2011).
[CrossRef]

Real-Time Imaging

M. Atiquzzaman and M. W. Akhtar, “A robust Hough transform technique for complete line segment description,” Real-Time Imaging1(6), 419–426 (1995).
[CrossRef]

Other

L. G. Shapiro and G. C. Stockman, Computer Vision (Prentice-Hall Inc., 2001), Chaps. 3 and 10.

Cybernet Systems Co, Ltd., “Free 3D DICOM viewer INTAGE Realia” (2010), http://kgt.cybernet.co.jp/viz/realia/english/intage_realia.html .

W. K. Pratt, Digital Image Processing (Wiley, 2001), Chap 14.

T. Y. Kong and A. Rosenfeld, Topological Algorithms for Digital Image Processing (Elsevier Science, 1996), Chap 2.

T. Okamura, “Angioplasty Summit MD” (2010). http://www.summitmd.com/pdf/pdf/1430_Safety_4_TakayukiOkamura.pdf

V. Farooq, B. D. Gogas, T. Okamura, J. H. Heo, M. Magro, J. Gomez-Lara, Y. Onuma, M. D. Radu, S. Brugaletta, R. J. van Geuns, H. M. Garcia-Garcia, and P. W. Serruys, “Three-dimensional optical frequency domain imaging in conventional percoutaneous coronary intervention: the potential for clinical application,” Eur. Heart J. (advance access), http://eurheartj.oxfordjournals.org/content/early/2011/11/21/eurheartj.ehr409.extract .

Global Industry Analysts, Inc., “Coronary stents - a global strategic business report (2011),” http://www.strategyr.com/Coronary_Stents_Market_Report.asp .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Flowchart of the entire method. Following the segmentation of the imaging catheter, the guide-wire(s), stent struts and the vessel lumen, three-dimensional rendering of IV-OCT data is automatically obtained. Automatic pullback calibration is obtained by employing imaging catheter segmentation results.

Fig. 2
Fig. 2

Hough transform for the automatic detection of the imaging catheter. The imaging catheter is automatically located on the polar image domain by a rapid algorithm for the detection of vertical lines based on the Hough transform. Segmentation over multiple frames makes the process robust to noise or image artifacts. The large yellow arrow is pointing to catheter’s internal structures (largest concentric ring), the green arrow to the plastic external sheet covering the imaging catheter and x- and y axes are arbitrarily set to define the Hough space as detailed in the text.

Fig. 3
Fig. 3

Visual example of the guide wire segmentation procedure. A feature image is created from the entire pullback by accumulating pixel intensities over individual A-lines (fig. b). Then morphological operations are applied (fig. c) and the guide-wire(s) is located as a connected object in fig. (d). Figures (e) and (f) show segmentation results over the entire pullback and on a single frame, respectively.

Fig. 4
Fig. 4

Stent struts and lumen segmentation. Following A-line classification on the polar image domain, segmentation is obtained by applying spatial continuity over multiple A-lines (a). Thus, the image is scan-converted to Cartesian domain for visualization and quantification of strut apposition (b).

Fig. 5
Fig. 5

Look-up and opacity tables. Different opacity values (y-axis) are given to stents struts and the vessel wall. The intensity range for the different structures is displayed by the x-axis. Moreover, also the colormap utilized for 3D rendering is reported.

Fig. 6
Fig. 6

Validation results. Above: regression analysis and Bland-Altman statistics for automatic calibration results. Below: guide-wire segmentation results. Values are expressed in pixels, with a pixel size of ~5.2 µm. For the validation of the automatic calibration algorithm, reported values correspond to the pixel shift in the original image automatically (y-axis) and manually (x-axis) obtained. For the GW segmentation, reported values correspond to the A-line number where guide-wire boundaries are located both automatically (y-axis) and manually (x-axis).

Fig. 7
Fig. 7

Fully automatic 3D IV-OCT imaging. The figure compares 3D IV-OCT stent pattern to a priori data from the manufacturer (Promus Element, Boston Scientific, Natick, MA). Small details of the stent pattern (green circles) are visible in both 3D images and manufacturer data. An edge dissection is also clearly visible in the 3D image (yellow arrow). Asterisk (*) indicates guide-wire shadowing artifact.

Fig. 8
Fig. 8

3D IV-OCT stent pattern of another stent device (Xience Prime, Abbott Vascular, Santa Clara, CA). Yellow arrows point to a fine stent detail correctly visualized by 3D IV-OCT in a reproducible way. In addition, the figure shows that a slower acquisition speed (10 mm/s) results in an improved longitudinal resolution.

Fig. 9
Fig. 9

Both figures (a) and (b) compare automatic 3D imaging to stent appearance at angiography (arrows point to vessel stenosis). Figure (a) shows a simple lesion before and after stent implantation in the left anterior descending artery (LAD). In fig. (b) a lesion located very close to the ostium of side branches of the LAD is depicted. 3D images are able to better illustrate vessel anatomy compared to conventional 2D images. *Asterisk indicates side-branches – † indicates the guide-wire.

Fig. 10
Fig. 10

Panel (a) shows coronary intraluminal thrombus partially covering a stent automatically displayed by 3D IV-OCT (yellow arrows). A stent over a side branch and its different compartments (4 in total) are visible in the 3D rendering in fig. (b). Assessment of the such jailing compartments would be very difficult on conventional 2D IV-OCT images. Asterisk (*) indicates guide-wire shadowing artifact.

Fig. 11
Fig. 11

Example of automatic characterization of stent malapposition. 3D spatial distribution of a stent edge malapposition is displayed fully automatically (blue color).If compared to 2D images, 3D IV-OCT better illustrates spatial distribution of malapposed struts.

Fig. 12
Fig. 12

Example of automatic IV-OCT 3D visualization of a rewired side-branch in bifurcation PCI. Image on the top illustrates how 3D IVOCT can guide the positioning of the guide-wire (yellow arrow) in a distal cell for subsequent side-branch reopening. This can potentially optimize side-branch rewiring and reopening procedures. Evaluation of stent cells through 2D images and guide-wire positioning, may be unfeasible. Bottom figure illustrates the final result of side branch reopening, confirming the absence of free floating material. Asterisk (*) indicates the guide-wire in conventional 2D images.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ=xcos(θ)+ysin(θ),

Metrics