Abstract

This study aims at investigating the efficiency of bimodal spectroscopy in detection of hypertrophic scar tissue on a preclinical model. Fluorescence and Diffuse Reflectance spectra were collected from 55 scars deliberately created on ears of 20 rabbits, amongst which some received tacrolimus injection to provide non-hypertrophic scar tissue. The spectroscopic data measured on hypertrophic and non-hypertrophic scar tissues were used for developing our classification algorithm. Spectral features were extracted from corrected data and analyzed to classify the scar tissues into hypertrophic or non-hypertrophic. The Algorithm was developed using k-NN classifier and validated by comparing to histological classification result with Leave-One-Out cross validation. Bimodal spectroscopy showed promising results in detecting hypertrophic tissue (sensibility 90.5%, specificity 94.4%). The features used for classification were extracted from the autofluorescence spectra collected at 4 CEFS with excitations at 360, 410, and 420 nm. This indicates the hypertrophic process may involve change in concentration of several fluorophores (collagen, elastin and NADH) excited in this range, or modification in volume of explored tissue layers (epidermis and dermis) due to tissue thickening.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Zatsiorsky and W. Kraemer, Science and practice of strength training, 2nd ed. (Human Kinetics, 2006).
  2. B. Berman, W. Valins, S. Amini, and M.H. Viera, “Keloid and hypertrophic scar,’ http://emedicine.medscape.com/article/1057599-overview .
  3. C. W. Kischer and G. S. Brody, “Structure of the collagen nodule from hypertrophic scars and keloids,’ Scan. Electron. Microsc.3, , 371–376 (1981).
  4. G. A. Wagnieres, W. M. Star, and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,’ Photochem Photobiol.5, 603–632 (1998).
  5. K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,’ J. Fluorescence.4, 17–40 (1994).
    [CrossRef]
  6. I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.
  7. R. R. Anderson and J. A. Parrish, “The optics of fuman skin,’ J. Investigat. Dermatol.77, 13–19 (1981).
    [CrossRef]
  8. I. Georgakoudi, B.C. Jacobson, and J.V. Dam, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barret’s esophagus,’ Gastroenterology120(7), 1620–1629 (2001).
    [CrossRef] [PubMed]
  9. I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002).
    [CrossRef]
  10. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,’ Neoplasia2(1–2), 89–117 (2000).
    [CrossRef] [PubMed]
  11. N. M. Marìn, A. Milbourne, and H. Rhodes, “Diffuse reflectance patterns in cervical spectroscopy,’ Gynecol. Oncol.99(3), 116–120 (2005).
    [CrossRef]
  12. S.M. Chidananda, K. Satyamoorthy, and L. Rai, “Optical diagnosis of cervical cancer by fluorescence spectroscopy technique,’ Int. J. Cancer119(1), 139–145 (2006).
    [CrossRef] [PubMed]
  13. R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001).
    [CrossRef] [PubMed]
  14. C. Zhu, G.M. Palmer, and T.M. Breslin, “Use of a multisepartation fiber optical probe for the optical diagnosis of breast cancer,’ J. Biomed. Opt.10(2), 024032 (2001).
    [CrossRef]
  15. J. R. Mourant, I. J. Bigio, and J. Boyer, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,’ Lasers Surg. Med.17, 350–357 (1995).
    [CrossRef] [PubMed]
  16. B. W. Murphy and R. J. Webster, “Toward the disctrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,’ J. Biomed. Opt.10(6), 064020 (2005).
    [CrossRef]
  17. G. Zonios, L.T. Perelman, and V. Backman, “Diffuse reflectance spectroscopy of human ademonatous colon polyps,’ Appl. Opt.38(31), 6628–3667 (1999).
    [CrossRef]
  18. E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009).
    [CrossRef] [PubMed]
  19. G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).
  20. M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
    [CrossRef] [PubMed]
  21. G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
    [CrossRef]
  22. N. M. Marin, N. McKinnon, and C. MacAulay, “Calibration standards for multicenter clinical trial of fluorescence spectroscopy for in vivo diagnosis’ J. Biomed. Opt.11(1), 014010 (2006).
    [CrossRef] [PubMed]
  23. H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
    [CrossRef] [PubMed]
  24. J. E Jackson, User’s guide to Principle Component (Wiley, 1991).
    [CrossRef] [PubMed]
  25. M. Dash and H. Liu, “Features selection for classification’ Intell. Data Anal.1, 131–156 (1997).
    [CrossRef]
  26. M. Schumacher, N. Hollander, and W. Sauerbrei, “Resampling and cross-validation techniques : a tool to reduce bias caused by model building,’ Stat. Med.16(24), 2813—2827 (1997).
    [CrossRef]
  27. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
    [CrossRef] [PubMed]
  28. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,’ Opt. Express14(10), 4395–4402 (2006).
    [CrossRef] [PubMed]
  29. G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).
  30. R. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. Neil, A. de Mello, and P. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,’ Opt. Express13(16), 6275–6285 (2005).
    [CrossRef] [PubMed]
  31. A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).
  32. N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,’ Vibrat. Spectrosc.28, 17–23 (2002).
    [CrossRef]
  33. K. M. Katika and L. Pilon, “Steady-state directional diffuse reflectance and fluorescence of human skin,’ Appl. Opt.45(17), 4174—4183 (2006).
    [CrossRef] [PubMed]
  34. F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
    [CrossRef]
  35. V. Tuchin, Tissue Optics : Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).
  36. O. Kloeters, A. Tandara, and T. A. Mustoe, “Hypertrophic scar model in the rabbit ear : a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction’ Wound Repair Regenerat.15(Suppl. 1), S40–S45(2008).
    [CrossRef]
  37. R. Kortum and E. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,’ Annu. Rev. Phys. Chem.47, 555–606 (1996).
    [CrossRef]

2011

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

2009

E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009).
[CrossRef] [PubMed]

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

2008

O. Kloeters, A. Tandara, and T. A. Mustoe, “Hypertrophic scar model in the rabbit ear : a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction’ Wound Repair Regenerat.15(Suppl. 1), S40–S45(2008).
[CrossRef]

2006

K. M. Katika and L. Pilon, “Steady-state directional diffuse reflectance and fluorescence of human skin,’ Appl. Opt.45(17), 4174—4183 (2006).
[CrossRef] [PubMed]

J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,’ Opt. Express14(10), 4395–4402 (2006).
[CrossRef] [PubMed]

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

N. M. Marin, N. McKinnon, and C. MacAulay, “Calibration standards for multicenter clinical trial of fluorescence spectroscopy for in vivo diagnosis’ J. Biomed. Opt.11(1), 014010 (2006).
[CrossRef] [PubMed]

S.M. Chidananda, K. Satyamoorthy, and L. Rai, “Optical diagnosis of cervical cancer by fluorescence spectroscopy technique,’ Int. J. Cancer119(1), 139–145 (2006).
[CrossRef] [PubMed]

2005

B. W. Murphy and R. J. Webster, “Toward the disctrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,’ J. Biomed. Opt.10(6), 064020 (2005).
[CrossRef]

R. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. Neil, A. de Mello, and P. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,’ Opt. Express13(16), 6275–6285 (2005).
[CrossRef] [PubMed]

A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).

N. M. Marìn, A. Milbourne, and H. Rhodes, “Diffuse reflectance patterns in cervical spectroscopy,’ Gynecol. Oncol.99(3), 116–120 (2005).
[CrossRef]

2002

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,’ Vibrat. Spectrosc.28, 17–23 (2002).
[CrossRef]

I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002).
[CrossRef]

2001

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001).
[CrossRef] [PubMed]

C. Zhu, G.M. Palmer, and T.M. Breslin, “Use of a multisepartation fiber optical probe for the optical diagnosis of breast cancer,’ J. Biomed. Opt.10(2), 024032 (2001).
[CrossRef]

I. Georgakoudi, B.C. Jacobson, and J.V. Dam, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barret’s esophagus,’ Gastroenterology120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

2000

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,’ Neoplasia2(1–2), 89–117 (2000).
[CrossRef] [PubMed]

1999

1998

G. A. Wagnieres, W. M. Star, and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,’ Photochem Photobiol.5, 603–632 (1998).

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

1997

M. Dash and H. Liu, “Features selection for classification’ Intell. Data Anal.1, 131–156 (1997).
[CrossRef]

M. Schumacher, N. Hollander, and W. Sauerbrei, “Resampling and cross-validation techniques : a tool to reduce bias caused by model building,’ Stat. Med.16(24), 2813—2827 (1997).
[CrossRef]

1996

R. Kortum and E. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,’ Annu. Rev. Phys. Chem.47, 555–606 (1996).
[CrossRef]

1995

J. R. Mourant, I. J. Bigio, and J. Boyer, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,’ Lasers Surg. Med.17, 350–357 (1995).
[CrossRef] [PubMed]

1994

K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,’ J. Fluorescence.4, 17–40 (1994).
[CrossRef]

1981

R. R. Anderson and J. A. Parrish, “The optics of fuman skin,’ J. Investigat. Dermatol.77, 13–19 (1981).
[CrossRef]

C. W. Kischer and G. S. Brody, “Structure of the collagen nodule from hypertrophic scars and keloids,’ Scan. Electron. Microsc.3, , 371–376 (1981).

Amini, S.

B. Berman, W. Valins, S. Amini, and M.H. Viera, “Keloid and hypertrophic scar,’ http://emedicine.medscape.com/article/1057599-overview .

Amouroux, M.

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of fuman skin,’ J. Investigat. Dermatol.77, 13–19 (1981).
[CrossRef]

Angheloiu, G.

I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.

Backman, V.

I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002).
[CrossRef]

G. Zonios, L.T. Perelman, and V. Backman, “Diffuse reflectance spectroscopy of human ademonatous colon polyps,’ Appl. Opt.38(31), 6628–3667 (1999).
[CrossRef]

I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.

Benninger, R.

Berman, B.

B. Berman, W. Valins, S. Amini, and M.H. Viera, “Keloid and hypertrophic scar,’ http://emedicine.medscape.com/article/1057599-overview .

Bigio, I. J.

J. R. Mourant, I. J. Bigio, and J. Boyer, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,’ Lasers Surg. Med.17, 350–357 (1995).
[CrossRef] [PubMed]

Blondel, W. C. P. M.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009).
[CrossRef] [PubMed]

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

Boulesteix, T.

A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).

Bourg-Heckly, G.

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

Boyer, J.

J. R. Mourant, I. J. Bigio, and J. Boyer, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,’ Lasers Surg. Med.17, 350–357 (1995).
[CrossRef] [PubMed]

Breslin, T.M.

C. Zhu, G.M. Palmer, and T.M. Breslin, “Use of a multisepartation fiber optical probe for the optical diagnosis of breast cancer,’ J. Biomed. Opt.10(2), 024032 (2001).
[CrossRef]

Brody, G. S.

C. W. Kischer and G. S. Brody, “Structure of the collagen nodule from hypertrophic scars and keloids,’ Scan. Electron. Microsc.3, , 371–376 (1981).

Burke, L.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001).
[CrossRef] [PubMed]

Chen, G.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Chen, J.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Chen, R.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Chidananda, S.M.

S.M. Chidananda, K. Satyamoorthy, and L. Rai, “Optical diagnosis of cervical cancer by fluorescence spectroscopy technique,’ Int. J. Cancer119(1), 139–145 (2006).
[CrossRef] [PubMed]

Dam, J.V.

I. Georgakoudi, B.C. Jacobson, and J.V. Dam, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barret’s esophagus,’ Gastroenterology120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Dash, M.

M. Dash and H. Liu, “Features selection for classification’ Intell. Data Anal.1, 131–156 (1997).
[CrossRef]

de Bruijn, H. S.

de Mello, A.

Deutsch, T. F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

Diaz-Ayil, G.

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

Didelon, J.

E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009).
[CrossRef] [PubMed]

Enquist, H.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

Estanislao, R. B.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

French, P.

Galvan, J.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

Georgakoudi, I.

I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002).
[CrossRef]

I. Georgakoudi, B.C. Jacobson, and J.V. Dam, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barret’s esophagus,’ Gastroenterology120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.

Gerritsen, H. C.

Gisquet, H.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

Granjon, Y.

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

Guillemin, F.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009).
[CrossRef] [PubMed]

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

Haka, A.

I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.

Hofmann, O.

Hollander, N.

M. Schumacher, N. Hollander, and W. Sauerbrei, “Resampling and cross-validation techniques : a tool to reduce bias caused by model building,’ Stat. Med.16(24), 2813—2827 (1997).
[CrossRef]

Jackson, J. E

J. E Jackson, User’s guide to Principle Component (Wiley, 1991).
[CrossRef] [PubMed]

Jacobson, B.C.

I. Georgakoudi, B.C. Jacobson, and J.V. Dam, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barret’s esophagus,’ Gastroenterology120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Jiang, X.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Katika, K. M.

Khaiat, A.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

Kischer, C. W.

C. W. Kischer and G. S. Brody, “Structure of the collagen nodule from hypertrophic scars and keloids,’ Scan. Electron. Microsc.3, , 371–376 (1981).

Kloeters, O.

O. Kloeters, A. Tandara, and T. A. Mustoe, “Hypertrophic scar model in the rabbit ear : a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction’ Wound Repair Regenerat.15(Suppl. 1), S40–S45(2008).
[CrossRef]

Koenig, F.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

Koenig, K.

K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,’ J. Fluorescence.4, 17–40 (1994).
[CrossRef]

Kollias, N.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,’ Vibrat. Spectrosc.28, 17–23 (2002).
[CrossRef]

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

Kortum, R.

R. Kortum and E. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,’ Annu. Rev. Phys. Chem.47, 555–606 (1996).
[CrossRef]

Kraemer, W.

V. Zatsiorsky and W. Kraemer, Science and practice of strength training, 2nd ed. (Human Kinetics, 2006).

Lacy, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

Larne, R.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

Latarch, C.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

Leroux, A.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

Li, J.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

Liu, H.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

M. Dash and H. Liu, “Features selection for classification’ Intell. Data Anal.1, 131–156 (1997).
[CrossRef]

Lotan, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

MacAulay, C.

N. M. Marin, N. McKinnon, and C. MacAulay, “Calibration standards for multicenter clinical trial of fluorescence spectroscopy for in vivo diagnosis’ J. Biomed. Opt.11(1), 014010 (2006).
[CrossRef] [PubMed]

Marin, N. M.

N. M. Marin, N. McKinnon, and C. MacAulay, “Calibration standards for multicenter clinical trial of fluorescence spectroscopy for in vivo diagnosis’ J. Biomed. Opt.11(1), 014010 (2006).
[CrossRef] [PubMed]

Marìn, N. M.

N. M. Marìn, A. Milbourne, and H. Rhodes, “Diffuse reflectance patterns in cervical spectroscopy,’ Gynecol. Oncol.99(3), 116–120 (2005).
[CrossRef]

McGinty, J.

McGovern, F. J.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

McKinnon, N.

N. M. Marin, N. McKinnon, and C. MacAulay, “Calibration standards for multicenter clinical trial of fluorescence spectroscopy for in vivo diagnosis’ J. Biomed. Opt.11(1), 014010 (2006).
[CrossRef] [PubMed]

Merlin, J. L.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

Milbourne, A.

N. M. Marìn, A. Milbourne, and H. Rhodes, “Diffuse reflectance patterns in cervical spectroscopy,’ Gynecol. Oncol.99(3), 116–120 (2005).
[CrossRef]

Motz, J.

I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.

Mourant, J. R.

J. R. Mourant, I. J. Bigio, and J. Boyer, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,’ Lasers Surg. Med.17, 350–357 (1995).
[CrossRef] [PubMed]

Müller, M. G.

I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002).
[CrossRef]

Munro, I.

Muraca, E.

R. Kortum and E. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,’ Annu. Rev. Phys. Chem.47, 555–606 (1996).
[CrossRef]

Murphy, B. W.

B. W. Murphy and R. J. Webster, “Toward the disctrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,’ J. Biomed. Opt.10(6), 064020 (2005).
[CrossRef]

Mustoe, T. A.

O. Kloeters, A. Tandara, and T. A. Mustoe, “Hypertrophic scar model in the rabbit ear : a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction’ Wound Repair Regenerat.15(Suppl. 1), S40–S45(2008).
[CrossRef]

Myakov, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

Myrtle, J. F.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001).
[CrossRef] [PubMed]

Neil, M.

Niloff, J. M.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001).
[CrossRef] [PubMed]

Nordstrom, R. J.

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001).
[CrossRef] [PubMed]

Palero, J. A.

Palmer, G.M.

C. Zhu, G.M. Palmer, and T.M. Breslin, “Use of a multisepartation fiber optical probe for the optical diagnosis of breast cancer,’ J. Biomed. Opt.10(2), 024032 (2001).
[CrossRef]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of fuman skin,’ J. Investigat. Dermatol.77, 13–19 (1981).
[CrossRef]

Peiffert, D.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

Pena, A.

A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).

Perelman, L.T.

Pery, E.

E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009).
[CrossRef] [PubMed]

Pilon, L.

Rai, L.

S.M. Chidananda, K. Satyamoorthy, and L. Rai, “Optical diagnosis of cervical cancer by fluorescence spectroscopy technique,’ Int. J. Cancer119(1), 139–145 (2006).
[CrossRef] [PubMed]

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,’ Neoplasia2(1–2), 89–117 (2000).
[CrossRef] [PubMed]

Requejo-Isidro, J.

Rhodes, H.

N. M. Marìn, A. Milbourne, and H. Rhodes, “Diffuse reflectance patterns in cervical spectroscopy,’ Gynecol. Oncol.99(3), 116–120 (2005).
[CrossRef]

Richards-Kortum, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

Rivera, Z. S.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

Satyamoorthy, K.

S.M. Chidananda, K. Satyamoorthy, and L. Rai, “Optical diagnosis of cervical cancer by fluorescence spectroscopy technique,’ Int. J. Cancer119(1), 139–145 (2006).
[CrossRef] [PubMed]

Sauerbrei, W.

M. Schumacher, N. Hollander, and W. Sauerbrei, “Resampling and cross-validation techniques : a tool to reduce bias caused by model building,’ Stat. Med.16(24), 2813—2827 (1997).
[CrossRef]

Schanne-Klein, M.

A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).

Schneckenburger, H.

K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,’ J. Fluorescence.4, 17–40 (1994).
[CrossRef]

Schomacker, K. T.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

Schumacher, M.

M. Schumacher, N. Hollander, and W. Sauerbrei, “Resampling and cross-validation techniques : a tool to reduce bias caused by model building,’ Stat. Med.16(24), 2813—2827 (1997).
[CrossRef]

Sheets, E. E.

I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002).
[CrossRef]

Sokolov, K.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

Stamatas, G. N.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,’ Vibrat. Spectrosc.28, 17–23 (2002).
[CrossRef]

Star, W. M.

G. A. Wagnieres, W. M. Star, and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,’ Photochem Photobiol.5, 603–632 (1998).

Sterenborg, H. J. C. M.

Strupler, M.

A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).

Suero, M.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

Tandara, A.

O. Kloeters, A. Tandara, and T. A. Mustoe, “Hypertrophic scar model in the rabbit ear : a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction’ Wound Repair Regenerat.15(Suppl. 1), S40–S45(2008).
[CrossRef]

Tuchin, V.

V. Tuchin, Tissue Optics : Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).

Valins, W.

B. Berman, W. Valins, S. Amini, and M.H. Viera, “Keloid and hypertrophic scar,’ http://emedicine.medscape.com/article/1057599-overview .

van der Ploeg-van den Heuvel, A.

Viera, M.H.

B. Berman, W. Valins, S. Amini, and M.H. Viera, “Keloid and hypertrophic scar,’ http://emedicine.medscape.com/article/1057599-overview .

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,’ Photochem Photobiol.5, 603–632 (1998).

Webster, R. J.

B. W. Murphy and R. J. Webster, “Toward the disctrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,’ J. Biomed. Opt.10(6), 064020 (2005).
[CrossRef]

Wilson, B.C.

G. A. Wagnieres, W. M. Star, and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,’ Photochem Photobiol.5, 603–632 (1998).

Xie, S.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Xiong, S.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Zatsiorsky, V.

V. Zatsiorsky and W. Kraemer, Science and practice of strength training, 2nd ed. (Human Kinetics, 2006).

Zeng, H.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Zhu, C.

C. Zhu, G.M. Palmer, and T.M. Breslin, “Use of a multisepartation fiber optical probe for the optical diagnosis of breast cancer,’ J. Biomed. Opt.10(2), 024032 (2001).
[CrossRef]

Zhuo, S.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Zonios, G.

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,’ Vibrat. Spectrosc.28, 17–23 (2002).
[CrossRef]

G. Zonios, L.T. Perelman, and V. Backman, “Diffuse reflectance spectroscopy of human ademonatous colon polyps,’ Appl. Opt.38(31), 6628–3667 (1999).
[CrossRef]

Am. J. Obstetr. Gynecol.

I. Georgakoudi, E. E. Sheets, M. G. Müller, and V. Backman, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,’ Am. J. Obstetr. Gynecol.186(3), 374–382 (2002).
[CrossRef]

Annu. Rev. Phys. Chem.

R. Kortum and E. Muraca, “Quantitative optical spectroscopy for tissue diagnosis,’ Annu. Rev. Phys. Chem.47, 555–606 (1996).
[CrossRef]

Appl. Opt.

Appl. Phys.

G. Diaz-Ayil, M. Amouroux, W. C. P. M. Blondel, G. Bourg-Heckly, Y. Granjon, and F. Guillemin, “In vivo diagnosis of mouse skin precancerous stages using autofluorescence and diffuse reflectance bimodal spectroscopy : instrumentation, spectral feature extraction and linear classification,’ Appl. Phys.47, 012707 (2009).

Br. J. Dermotol.

G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, and S. Xie, “Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation,’ Br. J. Dermotol.161, 48–55 (2009).
[CrossRef]

Gastroenterology

I. Georgakoudi, B.C. Jacobson, and J.V. Dam, “Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barret’s esophagus,’ Gastroenterology120(7), 1620–1629 (2001).
[CrossRef] [PubMed]

Gynecol. Oncol.

N. M. Marìn, A. Milbourne, and H. Rhodes, “Diffuse reflectance patterns in cervical spectroscopy,’ Gynecol. Oncol.99(3), 116–120 (2005).
[CrossRef]

IEEE Trans. Biomed. Eng.

E. Pery, W. C. P. M. Blondel, J. Didelon, and F. Guillemin, “Simultaneous characterization of optical and rheological properties of carotid arteries via bimodal spectroscopy : experimental and simulation results’ IEEE Trans. Biomed. Eng.56(5), 1267–1276 (2009).
[CrossRef] [PubMed]

Int. J. Cancer

S.M. Chidananda, K. Satyamoorthy, and L. Rai, “Optical diagnosis of cervical cancer by fluorescence spectroscopy technique,’ Int. J. Cancer119(1), 139–145 (2006).
[CrossRef] [PubMed]

Intell. Data Anal.

M. Dash and H. Liu, “Features selection for classification’ Intell. Data Anal.1, 131–156 (1997).
[CrossRef]

J. Biomed. Opt.

M. Amouroux, G. Diaz-Ayil, W. C. P. M. Blondel, G. Bourg-Heckly, A. Leroux, and F. Guillemin, “Classification of ultra-violet irradiated mouse skin histological stages by bimodal spectroscopy (multiple excitation autofluorescence and diffuse reflectance),’ J. Biomed. Opt.14(1), 014011 (2009).
[CrossRef] [PubMed]

N. M. Marin, N. McKinnon, and C. MacAulay, “Calibration standards for multicenter clinical trial of fluorescence spectroscopy for in vivo diagnosis’ J. Biomed. Opt.11(1), 014010 (2006).
[CrossRef] [PubMed]

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,’ J. Biomed. Opt.7(1), 148—156 (2002).
[CrossRef] [PubMed]

B. W. Murphy and R. J. Webster, “Toward the disctrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,’ J. Biomed. Opt.10(6), 064020 (2005).
[CrossRef]

C. Zhu, G.M. Palmer, and T.M. Breslin, “Use of a multisepartation fiber optical probe for the optical diagnosis of breast cancer,’ J. Biomed. Opt.10(2), 024032 (2001).
[CrossRef]

J. Fluorescence.

K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,’ J. Fluorescence.4, 17–40 (1994).
[CrossRef]

J. Investigat. Dermatol.

R. R. Anderson and J. A. Parrish, “The optics of fuman skin,’ J. Investigat. Dermatol.77, 13–19 (1981).
[CrossRef]

J. Urol.

F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,’ J. Urol., 51(2), 342–345 (1998).
[CrossRef]

Lasers Surg. Med.

J. R. Mourant, I. J. Bigio, and J. Boyer, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,’ Lasers Surg. Med.17, 350–357 (1995).
[CrossRef] [PubMed]

R. J. Nordstrom, L. Burke, J. M. Niloff, and J. F. Myrtle, “Indentification of cervical intraepithelial neoplasia(CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy,’ Lasers Surg. Med.29, 118–127(2001).
[CrossRef] [PubMed]

Neoplasia

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,’ Neoplasia2(1–2), 89–117 (2000).
[CrossRef] [PubMed]

Opt. Express

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,’ Opt. Express154(1), 125–132 (2006).

A. Pena, M. Strupler, T. Boulesteix, and M. Schanne-Klein, “Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy,’ Opt. Express13(16), 46268–46274 (2005).

R. Benninger, O. Hofmann, J. McGinty, J. Requejo-Isidro, I. Munro, M. Neil, A. de Mello, and P. French, “Time-resolved fluorescence imaging of solvent interactions in microfluidic devices,’ Opt. Express13(16), 6275–6285 (2005).
[CrossRef] [PubMed]

J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,’ Opt. Express14(10), 4395–4402 (2006).
[CrossRef] [PubMed]

Photochem Photobiol.

G. A. Wagnieres, W. M. Star, and B.C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,’ Photochem Photobiol.5, 603–632 (1998).

Scan. Electron. Microsc.

C. W. Kischer and G. S. Brody, “Structure of the collagen nodule from hypertrophic scars and keloids,’ Scan. Electron. Microsc.3, , 371–376 (1981).

Skin Res. Technol.

H. Gisquet, H. Liu, W. C. P. M. Blondel, A. Leroux, F. Guillemin, J. L. Merlin, D. Peiffert, and C. Latarch, “Intradermal Tacrolimus prevent scar hypertrophy in a rabbit ear model. A clinical, histological and spectroscopical analysis,’ Skin Res. Technol.17(2), 160–166 (2011).
[CrossRef] [PubMed]

Stat. Med.

M. Schumacher, N. Hollander, and W. Sauerbrei, “Resampling and cross-validation techniques : a tool to reduce bias caused by model building,’ Stat. Med.16(24), 2813—2827 (1997).
[CrossRef]

Vibrat. Spectrosc.

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,’ Vibrat. Spectrosc.28, 17–23 (2002).
[CrossRef]

Wound Repair Regenerat.

O. Kloeters, A. Tandara, and T. A. Mustoe, “Hypertrophic scar model in the rabbit ear : a reproducible model for studying scar tissue behavior with new observations on silicone gel sheeting for scar reduction’ Wound Repair Regenerat.15(Suppl. 1), S40–S45(2008).
[CrossRef]

Other

V. Tuchin, Tissue Optics : Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).

J. E Jackson, User’s guide to Principle Component (Wiley, 1991).
[CrossRef] [PubMed]

V. Zatsiorsky and W. Kraemer, Science and practice of strength training, 2nd ed. (Human Kinetics, 2006).

B. Berman, W. Valins, S. Amini, and M.H. Viera, “Keloid and hypertrophic scar,’ http://emedicine.medscape.com/article/1057599-overview .

I. Georgakoudi, J. Motz, V. Backman, G. Angheloiu, and A. Haka, “Quantitative characterization of biological tissue using optical spectroscopy,’ in Biomedical Photonics Handbook, V.-D. Tuan, ed. (CRC Press, 2003), pp. 1–27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the spatially resolved bimodal fibred spectroscopy set up. 1) Short arc Xenon Source 2) Heat control filter 3) Plano condenser lens 4) Wide band-pass filter wheel 5) Combined set of short- and long-pass linearly variable filters 6) Excitation fiber positioning stage 7) Micrometric translation stages 8) Fiber optics probe (distal tip) 9) Micrometric stage motor controller 10) Imaging Spectrograph 11) PC computer

Fig. 2
Fig. 2

(a), (b), (c) Images of histological slices for normal and scar tissues (Hematoxylin and Eosin stains). (d) scars on the ventral side of an anesthetized rabbit’s ear. (e) fiber probe positioning piece. (f) irregular scar tissue (28 days after surgical wound)

Fig. 3
Fig. 3

Mean±SD peak-normalized spectra excited at 368nm and measured at the CEFS of 438μm for (a) normal (n = 22), (b) hypertrophic scar (HT, n = 22) and (c) non-hypertrophic scar (NHT, n = 22) tissues. (d) Mean AF spectra for hypertrophic (bold line) and non-hypertrophic (dotted line) tissues excited at 368nm and measured at the 5th CEFS. The spectra are divided into 4 wavelength bands of 73nm width each (A :385–456nm, B :457–530nm, C :531–605nm, D :606–679nm) with respective correlation values : 0.943, 0.999, 0.999 and 0.866.

Fig. 4
Fig. 4

Schematic representation of the correspondences between mean thicknesses measured for healthy, hypertrophic (HT) and non-hypertrophic (NHT) tissue samples and the maximum penetration depth of excitation lights below 420nm in relation with the two main discriminant CEFS 440 and 670μm

Tables (4)

Tables Icon

Tab. 1. Acquisition parameters of the multichannel spectrometer with Gain = 1.7, ADC frequency = 20kHz and Slit width = 0.5mm, Output power was measured at the distal tip of the fiber probe

Tables Icon

Tab. 2. Type of calibration measures performed for the experimental protocol with corresponding calibration devices and application frequencies

Tables Icon

Tab. 3. Set of the 4 selected slope features used for classification

Tables Icon

Tab. 4. AF emission wavelength peaks and bands reported in the literature for main skin endogenous fluorophores in epidermis and dermis (corresponding embedded layers in last row) excited at wavelengths 370, 410 and 420 nm.

Metrics