Abstract

Imaging the retinal vasculature offers a surrogate view of systemic vascular health, allowing noninvasive and longitudinal assessment of vascular pathology. The earliest anomalies in vascular disease arise in the microvasculature, however current imaging methods lack the spatiotemporal resolution to track blood flow at the capillary level. We report here on novel imaging technology that allows direct, noninvasive optical imaging of erythrocyte flow in human retinal capillaries. This was made possible using adaptive optics for high spatial resolution (1.5 μm), sCMOS camera technology for high temporal resolution (460 fps), and tunable wavebands from a broadband laser for maximal erythrocyte contrast. Particle image velocimetry on our data sequences was used to quantify flow. We observed marked spatiotemporal variability in velocity, which ranged from 0.3 to 3.3 mm/s, and changed by up to a factor of 4 in a given capillary during the 130 ms imaging period. Both mean and standard deviation across the imaged capillary network varied markedly with time, yet their ratio remained a relatively constant parameter (0.50 ± 0.056). Our observations concur with previous work using less direct methods, validating this as an investigative tool for the study of microvascular disease in humans.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hirschberg, “Ueber diabetische Netzhautentzündung,” Dtsch. Med. Wochenschr. 16(51), 1181–1185 (1890).
    [Crossref]
  2. R. Gunn, “Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal diseases and (2) of increased arterial tension,” Trans. Ophthalmol. Soc. U. K. 12, 124–125 (1892).
  3. N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
    [Crossref] [PubMed]
  4. M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
    [Crossref] [PubMed]
  5. M. K. Ikram, C. Y. Cheung, T. Y. Wong, and C. P. Chen, “Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease,” J. Neurol. Neurosurg. Psychiatry 83(9), 917–922 (2012).
    [Crossref] [PubMed]
  6. K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
    [Crossref] [PubMed]
  7. P. Gasser and J. Flammer, “Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma,” Am. J. Ophthalmol. 111(5), 585–588 (1991).
    [PubMed]
  8. H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
    [Crossref] [PubMed]
  9. G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
    [Crossref] [PubMed]
  10. J. C. de la Torre, “Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics,” Lancet Neurol. 3(3), 184–190 (2004).
    [Crossref] [PubMed]
  11. G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
    [Crossref] [PubMed]
  12. P. Gasser and O. Meienberg, “Finger microcirculation in classical migraine. A video-microscopic study of nailfold capillaries,” Eur. Neurol. 31(3), 168–171 (1991).
    [Crossref] [PubMed]
  13. H. A. Quigley, “Neuronal death in glaucoma,” Prog. Retin. Eye Res. 18(1), 39–57 (1999).
    [Crossref] [PubMed]
  14. T. Tanaka, C. Riva, and B. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186(4166), 830–831 (1974).
    [Crossref] [PubMed]
  15. K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
    [Crossref] [PubMed]
  16. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [Crossref] [PubMed]
  17. J. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996).
    [Crossref]
  18. V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
    [Crossref] [PubMed]
  19. A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Surv. Ophthalmol. 42(6), 509–533 (1998).
    [Crossref] [PubMed]
  20. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
    [Crossref] [PubMed]
  21. C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler measurement of relative blood velocity in the human optic nerve head,” Invest. Ophthalmol. Vis. Sci. 22(2), 241–248 (1982).
    [PubMed]
  22. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [Crossref] [PubMed]
  23. J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
    [Crossref] [PubMed]
  24. J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
    [Crossref] [PubMed]
  25. J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
    [Crossref] [PubMed]
  26. J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
    [Crossref] [PubMed]
  27. R. Chibber, B. M. Ben-Mahmud, S. Chibber, and E. M. Kohner, “Leukocytes in diabetic retinopathy,” Curr. Diabetes Rev. 3(1), 3–14 (2007).
    [Crossref] [PubMed]
  28. K. Miyamoto and Y. Ogura, “Pathogenetic potential of leukocytes in diabetic retinopathy,” Semin. Ophthalmol. 14(4), 233–239 (1999).
    [Crossref] [PubMed]
  29. G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
    [PubMed]
  30. B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
    [PubMed]
  31. Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
    [Crossref] [PubMed]
  32. Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
    [Crossref] [PubMed]
  33. Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
    [Crossref] [PubMed]
  34. P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
    [Crossref] [PubMed]
  35. F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
    [Crossref] [PubMed]
  36. R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
    [Crossref] [PubMed]
  37. B. Falsini, C. E. Riva, and E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Vis. Sci. 43(7), 2309–2316 (2002).
    [PubMed]
  38. J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
    [Crossref] [PubMed]
  39. P. Bedggood and A. Metha, “Oximetry imaging of the retinal microvasculature using adaptive optics,” in Association for Research in Vision and Ophthalmology Annual Meeting (Fort Lauderdale, FL, 2012).
  40. R. Keane and R. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
    [Crossref]
  41. S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
    [PubMed]
  42. A. G. Hudetz, “Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy,” Microcirculation 4(2), 233–252 (1997).
    [Crossref] [PubMed]
  43. M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci. 27(12), 1698–1705 (1986).
    [PubMed]
  44. Y. C. Fung, “Stochastic flow in capillary blood vessels,” Microvasc. Res. 5(1), 34–48 (1973).
    [Crossref] [PubMed]
  45. P. C. Johnson and H. Wayland, “Regulation of blood flow in single capillaries,” Am. J. Physiol. 212(6), 1405–1415 (1967).
    [PubMed]
  46. G. Pawlik, A. Rackl, and R. J. Bing, “Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study,” Brain Res. 208(1), 35–58 (1981).
    [Crossref] [PubMed]
  47. A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
    [Crossref] [PubMed]
  48. Y. C. Fung, “Blood flow in the capillary bed,” J. Biomech. 2(4), 353–372 (1969).
    [Crossref] [PubMed]
  49. D. Cousineau, C. P. Rose, D. Lamoureux, and C. A. Goresky, “Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog,” Circ. Res. 53(6), 719–730 (1983).
    [Crossref] [PubMed]
  50. I. Krolo and A. G. Hudetz, “Hypoxemia alters erythrocyte perfusion pattern in the cerebral capillary network,” Microvasc. Res. 59(1), 72–79 (2000).
    [Crossref] [PubMed]
  51. M. L. Schulte, J. D. Wood, and A. G. Hudetz, “Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat,” Brain Res. 963(1-2), 81–92 (2003).
    [Crossref] [PubMed]
  52. J. Vogel and W. Kuschinsky, “Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia,” J. Cereb. Blood Flow Metab. 16(6), 1300–1306 (1996).
    [Crossref] [PubMed]
  53. S. N. Jespersen and L. Østergaard, “The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism,” J. Cereb. Blood Flow Metab. 32(2), 264–277 (2012).
    [Crossref] [PubMed]
  54. H. K. Rucker, H. J. Wynder, and W. E. Thomas, “Cellular mechanisms of CNS pericytes,” Brain Res. Bull. 51(5), 363–369 (2000).
    [Crossref] [PubMed]
  55. S. S. Segal, “Regulation of blood flow in the microcirculation,” Microcirculation 12(1), 33–45 (2005).
    [Crossref] [PubMed]
  56. M. M. Guest, T. P. Bond, R. G. Cooper, and J. R. Derrick, “Red Blood Cells: Change in Shape in Capillaries,” Science 142(3597), 1319–1321 (1963).
    [Crossref] [PubMed]
  57. F. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics 11(1), 1–21 (1969).
    [Crossref]
  58. D. Cook, “Detection of influential observations in linear regression,” Technometrics 19(1), 15–18 (1977).
    [Crossref]

2012 (5)

M. K. Ikram, C. Y. Cheung, T. Y. Wong, and C. P. Chen, “Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease,” J. Neurol. Neurosurg. Psychiatry 83(9), 917–922 (2012).
[Crossref] [PubMed]

V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang, S. Barry, and A. E. Cable, “OCT methods for capillary velocimetry,” Biomed. Opt. Express 3(3), 612–629 (2012).
[Crossref] [PubMed]

Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
[Crossref] [PubMed]

S. N. Jespersen and L. Østergaard, “The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism,” J. Cereb. Blood Flow Metab. 32(2), 264–277 (2012).
[Crossref] [PubMed]

2011 (3)

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
[Crossref] [PubMed]

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

2010 (1)

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

2009 (1)

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

2008 (3)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[Crossref] [PubMed]

2007 (3)

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

R. Chibber, B. M. Ben-Mahmud, S. Chibber, and E. M. Kohner, “Leukocytes in diabetic retinopathy,” Curr. Diabetes Rev. 3(1), 3–14 (2007).
[Crossref] [PubMed]

F. C. Delori, R. H. Webb, D. H. Sliney, and American National Standards Institute, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24(5), 1250–1265 (2007).
[Crossref] [PubMed]

2005 (3)

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

S. S. Segal, “Regulation of blood flow in the microcirculation,” Microcirculation 12(1), 33–45 (2005).
[Crossref] [PubMed]

2004 (2)

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

J. C. de la Torre, “Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics,” Lancet Neurol. 3(3), 184–190 (2004).
[Crossref] [PubMed]

2003 (2)

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[Crossref] [PubMed]

M. L. Schulte, J. D. Wood, and A. G. Hudetz, “Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat,” Brain Res. 963(1-2), 81–92 (2003).
[Crossref] [PubMed]

2002 (1)

B. Falsini, C. E. Riva, and E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Vis. Sci. 43(7), 2309–2316 (2002).
[PubMed]

2000 (3)

H. K. Rucker, H. J. Wynder, and W. E. Thomas, “Cellular mechanisms of CNS pericytes,” Brain Res. Bull. 51(5), 363–369 (2000).
[Crossref] [PubMed]

I. Krolo and A. G. Hudetz, “Hypoxemia alters erythrocyte perfusion pattern in the cerebral capillary network,” Microvasc. Res. 59(1), 72–79 (2000).
[Crossref] [PubMed]

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

1999 (2)

K. Miyamoto and Y. Ogura, “Pathogenetic potential of leukocytes in diabetic retinopathy,” Semin. Ophthalmol. 14(4), 233–239 (1999).
[Crossref] [PubMed]

H. A. Quigley, “Neuronal death in glaucoma,” Prog. Retin. Eye Res. 18(1), 39–57 (1999).
[Crossref] [PubMed]

1998 (1)

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Surv. Ophthalmol. 42(6), 509–533 (1998).
[Crossref] [PubMed]

1997 (3)

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
[Crossref] [PubMed]

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
[PubMed]

A. G. Hudetz, “Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy,” Microcirculation 4(2), 233–252 (1997).
[Crossref] [PubMed]

1996 (2)

J. Vogel and W. Kuschinsky, “Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia,” J. Cereb. Blood Flow Metab. 16(6), 1300–1306 (1996).
[Crossref] [PubMed]

J. Briers, “Laser Doppler and time-varying speckle: a reconciliation,” J. Opt. Soc. Am. A 13(2), 345–350 (1996).
[Crossref]

1994 (1)

A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
[Crossref] [PubMed]

1992 (1)

R. Keane and R. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

1991 (4)

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
[Crossref] [PubMed]

P. Gasser and O. Meienberg, “Finger microcirculation in classical migraine. A video-microscopic study of nailfold capillaries,” Eur. Neurol. 31(3), 168–171 (1991).
[Crossref] [PubMed]

P. Gasser and J. Flammer, “Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma,” Am. J. Ophthalmol. 111(5), 585–588 (1991).
[PubMed]

1990 (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

1986 (1)

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci. 27(12), 1698–1705 (1986).
[PubMed]

1983 (2)

D. Cousineau, C. P. Rose, D. Lamoureux, and C. A. Goresky, “Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog,” Circ. Res. 53(6), 719–730 (1983).
[Crossref] [PubMed]

H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
[Crossref] [PubMed]

1982 (1)

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler measurement of relative blood velocity in the human optic nerve head,” Invest. Ophthalmol. Vis. Sci. 22(2), 241–248 (1982).
[PubMed]

1981 (1)

G. Pawlik, A. Rackl, and R. J. Bing, “Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study,” Brain Res. 208(1), 35–58 (1981).
[Crossref] [PubMed]

1980 (1)

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

1977 (1)

D. Cook, “Detection of influential observations in linear regression,” Technometrics 19(1), 15–18 (1977).
[Crossref]

1974 (1)

T. Tanaka, C. Riva, and B. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186(4166), 830–831 (1974).
[Crossref] [PubMed]

1973 (1)

Y. C. Fung, “Stochastic flow in capillary blood vessels,” Microvasc. Res. 5(1), 34–48 (1973).
[Crossref] [PubMed]

1969 (2)

Y. C. Fung, “Blood flow in the capillary bed,” J. Biomech. 2(4), 353–372 (1969).
[Crossref] [PubMed]

F. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics 11(1), 1–21 (1969).
[Crossref]

1967 (1)

P. C. Johnson and H. Wayland, “Regulation of blood flow in single capillaries,” Am. J. Physiol. 212(6), 1405–1415 (1967).
[PubMed]

1963 (1)

M. M. Guest, T. P. Bond, R. G. Cooper, and J. R. Derrick, “Red Blood Cells: Change in Shape in Capillaries,” Science 142(3597), 1319–1321 (1963).
[Crossref] [PubMed]

1892 (1)

R. Gunn, “Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal diseases and (2) of increased arterial tension,” Trans. Ophthalmol. Soc. U. K. 12, 124–125 (1892).

1890 (1)

J. Hirschberg, “Ueber diabetische Netzhautentzündung,” Dtsch. Med. Wochenschr. 16(51), 1181–1185 (1890).
[Crossref]

Abe, H.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

Adams, A. J.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Adrian, R.

R. Keane and R. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

Arend, O.

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

Aslam, T.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Baker, M. L.

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Barez, S.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Barry, S.

Bearse, M. A.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Bedggood, P.

P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
[Crossref] [PubMed]

Ben-Mahmud, B. M.

R. Chibber, B. M. Ben-Mahmud, S. Chibber, and E. M. Kohner, “Leukocytes in diabetic retinopathy,” Curr. Diabetes Rev. 3(1), 3–14 (2007).
[Crossref] [PubMed]

Ben-Sira, B.

T. Tanaka, C. Riva, and B. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186(4166), 830–831 (1974).
[Crossref] [PubMed]

Bertram, B.

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

Bing, R. J.

G. Pawlik, A. Rackl, and R. J. Bing, “Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study,” Brain Res. 208(1), 35–58 (1981).
[Crossref] [PubMed]

Bond, T. P.

M. M. Guest, T. P. Bond, R. G. Cooper, and J. R. Derrick, “Red Blood Cells: Change in Shape in Capillaries,” Science 142(3597), 1319–1321 (1963).
[Crossref] [PubMed]

Bouma, B.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Bremner, S. N.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
[PubMed]

Briers, J.

Burns, S. A.

Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[Crossref] [PubMed]

Cable, A. E.

Capron, F.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Carson, A. P.

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

Cense, B.

Chang, C. M.

G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
[Crossref] [PubMed]

Chen, C. P.

M. K. Ikram, C. Y. Cheung, T. Y. Wong, and C. P. Chen, “Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease,” J. Neurol. Neurosurg. Psychiatry 83(9), 917–922 (2012).
[Crossref] [PubMed]

Chen, T.

Cheung, C. Y.

M. K. Ikram, C. Y. Cheung, T. Y. Wong, and C. P. Chen, “Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease,” J. Neurol. Neurosurg. Psychiatry 83(9), 917–922 (2012).
[Crossref] [PubMed]

Chibber, R.

R. Chibber, B. M. Ben-Mahmud, S. Chibber, and E. M. Kohner, “Leukocytes in diabetic retinopathy,” Curr. Diabetes Rev. 3(1), 3–14 (2007).
[Crossref] [PubMed]

Chibber, S.

R. Chibber, B. M. Ben-Mahmud, S. Chibber, and E. M. Kohner, “Leukocytes in diabetic retinopathy,” Curr. Diabetes Rev. 3(1), 3–14 (2007).
[Crossref] [PubMed]

Chien, S.

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Christiansen, J. S.

H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
[Crossref] [PubMed]

Chui, T. Y.

Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Cioffi, G. A.

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Surv. Ophthalmol. 42(6), 509–533 (1998).
[Crossref] [PubMed]

Cook, D.

D. Cook, “Detection of influential observations in linear regression,” Technometrics 19(1), 15–18 (1977).
[Crossref]

Cooper, R. G.

M. M. Guest, T. P. Bond, R. G. Cooper, and J. R. Derrick, “Red Blood Cells: Change in Shape in Capillaries,” Science 142(3597), 1319–1321 (1963).
[Crossref] [PubMed]

Copeland, B. R.

G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
[Crossref] [PubMed]

Couper, D. J.

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

Cousineau, D.

D. Cousineau, C. P. Rose, D. Lamoureux, and C. A. Goresky, “Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog,” Circ. Res. 53(6), 719–730 (1983).
[Crossref] [PubMed]

de Boer, J.

de la Torre, J. C.

J. C. de la Torre, “Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics,” Lancet Neurol. 3(3), 184–190 (2004).
[Crossref] [PubMed]

Deary, I. J.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

del Zoppo, G. J.

G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
[Crossref] [PubMed]

Delori, F. C.

Derrick, J. R.

M. M. Guest, T. P. Bond, R. G. Cooper, and J. R. Derrick, “Red Blood Cells: Change in Shape in Capillaries,” Science 142(3597), 1319–1321 (1963).
[Crossref] [PubMed]

Dhamdhere, K. P.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Dhillon, B.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Dirnagl, U.

A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
[Crossref] [PubMed]

Einhäupl, K.

A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
[Crossref] [PubMed]

Falsini, B.

B. Falsini, C. E. Riva, and E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Vis. Sci. 43(7), 2309–2316 (2002).
[PubMed]

Flammer, J.

P. Gasser and J. Flammer, “Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma,” Am. J. Ophthalmol. 111(5), 585–588 (1991).
[PubMed]

Frostig, R. D.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Funaki, H.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

Funaki, S.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

Fung, Y. C.

Y. C. Fung, “Stochastic flow in capillary blood vessels,” Microvasc. Res. 5(1), 34–48 (1973).
[Crossref] [PubMed]

Y. C. Fung, “Blood flow in the capillary bed,” J. Biomech. 2(4), 353–372 (1969).
[Crossref] [PubMed]

Gasser, P.

P. Gasser and J. Flammer, “Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma,” Am. J. Ophthalmol. 111(5), 585–588 (1991).
[PubMed]

P. Gasser and O. Meienberg, “Finger microcirculation in classical migraine. A video-microscopic study of nailfold capillaries,” Eur. Neurol. 31(3), 168–171 (1991).
[Crossref] [PubMed]

Goresky, C. A.

D. Cousineau, C. P. Rose, D. Lamoureux, and C. A. Goresky, “Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog,” Circ. Res. 53(6), 719–730 (1983).
[Crossref] [PubMed]

Grinvald, A.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Grubbs, F.

F. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics 11(1), 1–21 (1969).
[Crossref]

Grunwald, J. E.

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler measurement of relative blood velocity in the human optic nerve head,” Invest. Ophthalmol. Vis. Sci. 22(2), 241–248 (1982).
[PubMed]

Guest, M. M.

M. M. Guest, T. P. Bond, R. G. Cooper, and J. R. Derrick, “Red Blood Cells: Change in Shape in Capillaries,” Science 142(3597), 1319–1321 (1963).
[Crossref] [PubMed]

Gunn, R.

R. Gunn, “Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal diseases and (2) of increased arterial tension,” Trans. Ophthalmol. Soc. U. K. 12, 124–125 (1892).

Hand, P. J.

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Harris, A.

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Surv. Ophthalmol. 42(6), 509–533 (1998).
[Crossref] [PubMed]

Helmke, B. P.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
[PubMed]

Hirschberg, J.

J. Hirschberg, “Ueber diabetische Netzhautentzündung,” Dtsch. Med. Wochenschr. 16(51), 1181–1185 (1890).
[Crossref]

Huang, D.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Huang, G.

Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Hudetz, A. G.

M. L. Schulte, J. D. Wood, and A. G. Hudetz, “Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat,” Brain Res. 963(1-2), 81–92 (2003).
[Crossref] [PubMed]

I. Krolo and A. G. Hudetz, “Hypoxemia alters erythrocyte perfusion pattern in the cerebral capillary network,” Microvasc. Res. 59(1), 72–79 (2000).
[Crossref] [PubMed]

A. G. Hudetz, “Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy,” Microcirculation 4(2), 233–252 (1997).
[Crossref] [PubMed]

Humbert, M.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Ikram, M. K.

M. K. Ikram, C. Y. Cheung, T. Y. Wong, and C. P. Chen, “Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease,” J. Neurol. Neurosurg. Psychiatry 83(9), 917–922 (2012).
[Crossref] [PubMed]

Inomata, H.

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci. 27(12), 1698–1705 (1986).
[PubMed]

Iwasaki, M.

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci. 27(12), 1698–1705 (1986).
[PubMed]

Izatt, J. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Jespersen, S. N.

S. N. Jespersen and L. Østergaard, “The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism,” J. Cereb. Blood Flow Metab. 32(2), 264–277 (2012).
[Crossref] [PubMed]

Jiang, J. Y.

Johnson, P. C.

P. C. Johnson and H. Wayland, “Regulation of blood flow in single capillaries,” Am. J. Physiol. 212(6), 1405–1415 (1967).
[PubMed]

Jung, F.

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

Kagemann, L.

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Surv. Ophthalmol. 42(6), 509–533 (1998).
[Crossref] [PubMed]

Keane, R.

R. Keane and R. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

Keen, H.

H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
[Crossref] [PubMed]

Klein, R.

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

Kohner, E. M.

R. Chibber, B. M. Ben-Mahmud, S. Chibber, and E. M. Kohner, “Leukocytes in diabetic retinopathy,” Curr. Diabetes Rev. 3(1), 3–14 (2007).
[Crossref] [PubMed]

Krolo, I.

I. Krolo and A. G. Hudetz, “Hypoxemia alters erythrocyte perfusion pattern in the cerebral capillary network,” Microvasc. Res. 59(1), 72–79 (2000).
[Crossref] [PubMed]

Kuschinsky, W.

J. Vogel and W. Kuschinsky, “Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia,” J. Cereb. Blood Flow Metab. 16(6), 1300–1306 (1996).
[Crossref] [PubMed]

Lamoureux, D.

D. Cousineau, C. P. Rose, D. Lamoureux, and C. A. Goresky, “Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog,” Circ. Res. 53(6), 719–730 (1983).
[Crossref] [PubMed]

Lassen, N. A.

H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
[Crossref] [PubMed]

Leone, O.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Liang, J.

Lieke, E. E.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Lindauer, U.

A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
[Crossref] [PubMed]

Lo, E. H.

Logean, E.

B. Falsini, C. E. Riva, and E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Vis. Sci. 43(7), 2309–2316 (2002).
[PubMed]

Macgillivray, T.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Mandeville, E. T.

Manzanera, S.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Martin, J. A.

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

Meienberg, O.

P. Gasser and O. Meienberg, “Finger microcirculation in classical migraine. A video-microscopic study of nailfold capillaries,” Eur. Neurol. 31(3), 168–171 (1991).
[Crossref] [PubMed]

Metha, A.

P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
[Crossref] [PubMed]

Miller, D. T.

Miyamoto, K.

K. Miyamoto and Y. Ogura, “Pathogenetic potential of leukocytes in diabetic retinopathy,” Semin. Ophthalmol. 14(4), 233–239 (1999).
[Crossref] [PubMed]

Mori, E.

G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
[Crossref] [PubMed]

Nakatsue, T.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

Nassif, N.

Ogura, Y.

K. Miyamoto and Y. Ogura, “Pathogenetic potential of leukocytes in diabetic retinopathy,” Semin. Ophthalmol. 14(4), 233–239 (1999).
[Crossref] [PubMed]

Østergaard, L.

S. N. Jespersen and L. Østergaard, “The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism,” J. Cereb. Blood Flow Metab. 32(2), 264–277 (2012).
[Crossref] [PubMed]

Park, B.

Parving, H. H.

H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
[Crossref] [PubMed]

Pattie, A.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Patton, N.

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

Pawlik, G.

G. Pawlik, A. Rackl, and R. J. Bing, “Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study,” Brain Res. 208(1), 35–58 (1981).
[Crossref] [PubMed]

Petrig, B. L.

Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[Crossref] [PubMed]

Pierce, M.

Pietra, G. G.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Qi, X.

Quigley, H. A.

H. A. Quigley, “Neuronal death in glaucoma,” Prog. Retin. Eye Res. 18(1), 39–57 (1999).
[Crossref] [PubMed]

Rackl, A.

G. Pawlik, A. Rackl, and R. J. Bing, “Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study,” Brain Res. 208(1), 35–58 (1981).
[Crossref] [PubMed]

Radhakrishnan, H.

Reid, L. M.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Reim, M.

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

Riva, C.

T. Tanaka, C. Riva, and B. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186(4166), 830–831 (1974).
[Crossref] [PubMed]

Riva, C. E.

B. Falsini, C. E. Riva, and E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Vis. Sci. 43(7), 2309–2316 (2002).
[PubMed]

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler measurement of relative blood velocity in the human optic nerve head,” Invest. Ophthalmol. Vis. Sci. 22(2), 241–248 (1982).
[PubMed]

Robbins, I. M.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Roorda, A.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
[Crossref] [PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

Rose, C. P.

D. Cousineau, C. P. Rose, D. Lamoureux, and C. A. Goresky, “Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog,” Circ. Res. 53(6), 719–730 (1983).
[Crossref] [PubMed]

Rose, K. M.

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

Rucker, H. K.

H. K. Rucker, H. J. Wynder, and W. E. Thomas, “Cellular mechanisms of CNS pericytes,” Brain Res. Bull. 51(5), 363–369 (2000).
[Crossref] [PubMed]

Schmid-Schönbein, G. W.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
[PubMed]

G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
[Crossref] [PubMed]

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Schulte, M. L.

M. L. Schulte, J. D. Wood, and A. G. Hudetz, “Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat,” Brain Res. 963(1-2), 81–92 (2003).
[Crossref] [PubMed]

Segal, S. S.

S. S. Segal, “Regulation of blood flow in the microcirculation,” Microcirculation 12(1), 33–45 (2005).
[Crossref] [PubMed]

Sharrett, A. R.

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

Shih, Y. Y.

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Shirakashi, M.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

Sinclair, S. H.

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler measurement of relative blood velocity in the human optic nerve head,” Invest. Ophthalmol. Vis. Sci. 22(2), 241–248 (1982).
[PubMed]

Skalak, R.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
[PubMed]

Sliney, D. H.

Song, H.

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Srinivasan, V. J.

Stewart, S.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Tam, J.

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
[Crossref] [PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

Tan, O.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Tanaka, T.

T. Tanaka, C. Riva, and B. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186(4166), 830–831 (1974).
[Crossref] [PubMed]

Tearney, G.

Them, A.

A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
[Crossref] [PubMed]

Thomas, W. E.

H. K. Rucker, H. J. Wynder, and W. E. Thomas, “Cellular mechanisms of CNS pericytes,” Brain Res. Bull. 51(5), 363–369 (2000).
[Crossref] [PubMed]

Tiruveedhula, P.

J. Tam, P. Tiruveedhula, and A. Roorda, “Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(4), 781–793 (2011).
[Crossref] [PubMed]

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

Toonen, H.

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

Ts’o, D. Y.

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Tuder, R. M.

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

Viberti, G. C.

H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
[Crossref] [PubMed]

Villringer, A.

A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
[Crossref] [PubMed]

Vogel, J.

J. Vogel and W. Kuschinsky, “Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia,” J. Cereb. Blood Flow Metab. 16(6), 1300–1306 (1996).
[Crossref] [PubMed]

Wang, J. J.

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

Wayland, H.

P. C. Johnson and H. Wayland, “Regulation of blood flow in single capillaries,” Am. J. Physiol. 212(6), 1405–1415 (1967).
[PubMed]

Webb, R. H.

White, B.

Williams, D. R.

Wolf, S.

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

Wong, T. Y.

M. K. Ikram, C. Y. Cheung, T. Y. Wong, and C. P. Chen, “Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease,” J. Neurol. Neurosurg. Psychiatry 83(9), 917–922 (2012).
[Crossref] [PubMed]

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

Wood, J. D.

M. L. Schulte, J. D. Wood, and A. G. Hudetz, “Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat,” Brain Res. 963(1-2), 81–92 (2003).
[Crossref] [PubMed]

Wynder, H. J.

H. K. Rucker, H. J. Wynder, and W. E. Thomas, “Cellular mechanisms of CNS pericytes,” Brain Res. Bull. 51(5), 363–369 (2000).
[Crossref] [PubMed]

Yaoeda, K.

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

Zhong, Z.

Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

Z. Zhong, B. L. Petrig, X. Qi, and S. A. Burns, “In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy,” Opt. Express 16(17), 12746–12756 (2008).
[Crossref] [PubMed]

Zweifach, B. W.

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
[PubMed]

Am. J. Ophthalmol. (2)

P. Gasser and J. Flammer, “Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma,” Am. J. Ophthalmol. 111(5), 585–588 (1991).
[PubMed]

K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129(6), 734–739 (2000).
[Crossref] [PubMed]

Am. J. Physiol. (2)

B. P. Helmke, S. N. Bremner, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schönbein, “Mechanisms for increased blood flow resistance due to leukocytes,” Am. J. Physiol. 273(6 Pt 2), H2884–H2890 (1997).
[PubMed]

P. C. Johnson and H. Wayland, “Regulation of blood flow in single capillaries,” Am. J. Physiol. 212(6), 1405–1415 (1967).
[PubMed]

Appl. Sci. Res. (1)

R. Keane and R. Adrian, “Theory of cross-correlation analysis of PIV images,” Appl. Sci. Res. 49(3), 191–215 (1992).
[Crossref]

Biomed. Opt. Express (2)

Blood (1)

G. W. Schmid-Schönbein, Y. Y. Shih, and S. Chien, “Morphometry of human leukocytes,” Blood 56(5), 866–875 (1980).
[PubMed]

Brain Res. (2)

G. Pawlik, A. Rackl, and R. J. Bing, “Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study,” Brain Res. 208(1), 35–58 (1981).
[Crossref] [PubMed]

M. L. Schulte, J. D. Wood, and A. G. Hudetz, “Cortical electrical stimulation alters erythrocyte perfusion pattern in the cerebral capillary network of the rat,” Brain Res. 963(1-2), 81–92 (2003).
[Crossref] [PubMed]

Brain Res. Bull. (1)

H. K. Rucker, H. J. Wynder, and W. E. Thomas, “Cellular mechanisms of CNS pericytes,” Brain Res. Bull. 51(5), 363–369 (2000).
[Crossref] [PubMed]

Circ. Res. (2)

D. Cousineau, C. P. Rose, D. Lamoureux, and C. A. Goresky, “Changes in cardiac transcapillary exchange with metabolic coronary vasodilation in the intact dog,” Circ. Res. 53(6), 719–730 (1983).
[Crossref] [PubMed]

A. Villringer, A. Them, U. Lindauer, K. Einhäupl, and U. Dirnagl, “Capillary perfusion of the rat brain cortex. An in vivo confocal microscopy study,” Circ. Res. 75(1), 55–62 (1994).
[Crossref] [PubMed]

Curr. Diabetes Rev. (1)

R. Chibber, B. M. Ben-Mahmud, S. Chibber, and E. M. Kohner, “Leukocytes in diabetic retinopathy,” Curr. Diabetes Rev. 3(1), 3–14 (2007).
[Crossref] [PubMed]

Dtsch. Med. Wochenschr. (1)

J. Hirschberg, “Ueber diabetische Netzhautentzündung,” Dtsch. Med. Wochenschr. 16(51), 1181–1185 (1890).
[Crossref]

Eur. Neurol. (1)

P. Gasser and O. Meienberg, “Finger microcirculation in classical migraine. A video-microscopic study of nailfold capillaries,” Eur. Neurol. 31(3), 168–171 (1991).
[Crossref] [PubMed]

Exp. Eye Res. (1)

J. A. Martin and A. Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88(3), 356–360 (2009).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (7)

Z. Zhong, H. Song, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels,” Invest. Ophthalmol. Vis. Sci. 52(7), 4151–4157 (2011).
[Crossref] [PubMed]

P. Bedggood and A. Metha, “Variability in bleach kinetics and amount of photopigment between individual foveal cones,” Invest. Ophthalmol. Vis. Sci. 53(7), 3673–3681 (2012).
[Crossref] [PubMed]

J. Tam, K. P. Dhamdhere, P. Tiruveedhula, S. Manzanera, S. Barez, M. A. Bearse, A. J. Adams, and A. Roorda, “Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy,” Invest. Ophthalmol. Vis. Sci. 52(12), 9257–9266 (2011).
[Crossref] [PubMed]

C. E. Riva, J. E. Grunwald, and S. H. Sinclair, “Laser Doppler measurement of relative blood velocity in the human optic nerve head,” Invest. Ophthalmol. Vis. Sci. 22(2), 241–248 (1982).
[PubMed]

B. Falsini, C. E. Riva, and E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Vis. Sci. 43(7), 2309–2316 (2002).
[PubMed]

J. Tam, J. A. Martin, and A. Roorda, “Noninvasive visualization and analysis of parafoveal capillaries in humans,” Invest. Ophthalmol. Vis. Sci. 51(3), 1691–1698 (2010).
[Crossref] [PubMed]

M. Iwasaki and H. Inomata, “Relation between superficial capillaries and foveal structures in the human retina,” Invest. Ophthalmol. Vis. Sci. 27(12), 1698–1705 (1986).
[PubMed]

J. Am. Coll. Cardiol. (1)

G. G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert, I. M. Robbins, L. M. Reid, and R. M. Tuder, “Pathologic assessment of vasculopathies in pulmonary hypertension,” J. Am. Coll. Cardiol. 43(12Suppl S), S25–S32 (2004).
[Crossref] [PubMed]

J. Anat. (1)

N. Patton, T. Aslam, T. Macgillivray, A. Pattie, I. J. Deary, and B. Dhillon, “Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures,” J. Anat. 206(4), 319–348 (2005).
[Crossref] [PubMed]

J. Biomech. (1)

Y. C. Fung, “Blood flow in the capillary bed,” J. Biomech. 2(4), 353–372 (1969).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 13(6), 064003 (2008).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (2)

J. Vogel and W. Kuschinsky, “Decreased heterogeneity of capillary plasma flow in the rat whisker-barrel cortex during functional hyperemia,” J. Cereb. Blood Flow Metab. 16(6), 1300–1306 (1996).
[Crossref] [PubMed]

S. N. Jespersen and L. Østergaard, “The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism,” J. Cereb. Blood Flow Metab. 32(2), 264–277 (2012).
[Crossref] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

M. K. Ikram, C. Y. Cheung, T. Y. Wong, and C. P. Chen, “Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease,” J. Neurol. Neurosurg. Psychiatry 83(9), 917–922 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (3)

J. Vis. (1)

Z. Zhong, G. Huang, T. Y. Chui, B. L. Petrig, and S. A. Burns, “Local flicker stimulation evokes local retinal blood velocity changes,” J. Vis. 12(6), 3 (2012).
[Crossref] [PubMed]

Lancet Neurol. (1)

J. C. de la Torre, “Is Alzheimer’s disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics,” Lancet Neurol. 3(3), 184–190 (2004).
[Crossref] [PubMed]

Metabolism (1)

H. H. Parving, G. C. Viberti, H. Keen, J. S. Christiansen, and N. A. Lassen, “Hemodynamic factors in the genesis of diabetic microangiopathy,” Metabolism 32(9), 943–949 (1983).
[Crossref] [PubMed]

Microcirculation (2)

A. G. Hudetz, “Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy,” Microcirculation 4(2), 233–252 (1997).
[Crossref] [PubMed]

S. S. Segal, “Regulation of blood flow in the microcirculation,” Microcirculation 12(1), 33–45 (2005).
[Crossref] [PubMed]

Microvasc. Res. (2)

Y. C. Fung, “Stochastic flow in capillary blood vessels,” Microvasc. Res. 5(1), 34–48 (1973).
[Crossref] [PubMed]

I. Krolo and A. G. Hudetz, “Hypoxemia alters erythrocyte perfusion pattern in the cerebral capillary network,” Microvasc. Res. 59(1), 72–79 (2000).
[Crossref] [PubMed]

Neurology (1)

K. M. Rose, T. Y. Wong, A. P. Carson, D. J. Couper, R. Klein, and A. R. Sharrett, “Migraine and retinal microvascular abnormalities: the Atherosclerosis Risk in Communities Study,” Neurology 68(20), 1694–1700 (2007).
[Crossref] [PubMed]

Ophthalmology (2)

J. A. Martin and A. Roorda, “Direct and noninvasive assessment of parafoveal capillary leukocyte velocity,” Ophthalmology 112(12), 2219–2224 (2005).
[Crossref] [PubMed]

S. Wolf, O. Arend, H. Toonen, B. Bertram, F. Jung, and M. Reim, “Retinal capillary blood flow measurement with a scanning laser ophthalmoscope. Preliminary results,” Ophthalmology 98(6), 996–1000 (1991).
[PubMed]

Opt. Express (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

R. D. Frostig, E. E. Lieke, D. Y. Ts’o, and A. Grinvald, “Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals,” Proc. Natl. Acad. Sci. U.S.A. 87(16), 6082–6086 (1990).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

H. A. Quigley, “Neuronal death in glaucoma,” Prog. Retin. Eye Res. 18(1), 39–57 (1999).
[Crossref] [PubMed]

Science (2)

T. Tanaka, C. Riva, and B. Ben-Sira, “Blood velocity measurements in human retinal vessels,” Science 186(4166), 830–831 (1974).
[Crossref] [PubMed]

M. M. Guest, T. P. Bond, R. G. Cooper, and J. R. Derrick, “Red Blood Cells: Change in Shape in Capillaries,” Science 142(3597), 1319–1321 (1963).
[Crossref] [PubMed]

Semin. Ophthalmol. (1)

K. Miyamoto and Y. Ogura, “Pathogenetic potential of leukocytes in diabetic retinopathy,” Semin. Ophthalmol. 14(4), 233–239 (1999).
[Crossref] [PubMed]

Stroke (2)

G. J. del Zoppo, G. W. Schmid-Schönbein, E. Mori, B. R. Copeland, and C. M. Chang, “Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons,” Stroke 22(10), 1276–1283 (1991).
[Crossref] [PubMed]

M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal signs and stroke: revisiting the link between the eye and brain,” Stroke 39(4), 1371–1379 (2008).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

A. Harris, L. Kagemann, and G. A. Cioffi, “Assessment of human ocular hemodynamics,” Surv. Ophthalmol. 42(6), 509–533 (1998).
[Crossref] [PubMed]

Technometrics (2)

F. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics 11(1), 1–21 (1969).
[Crossref]

D. Cook, “Detection of influential observations in linear regression,” Technometrics 19(1), 15–18 (1977).
[Crossref]

Trans. Ophthalmol. Soc. U. K. (1)

R. Gunn, “Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal diseases and (2) of increased arterial tension,” Trans. Ophthalmol. Soc. U. K. 12, 124–125 (1892).

Other (1)

P. Bedggood and A. Metha, “Oximetry imaging of the retinal microvasculature using adaptive optics,” in Association for Research in Vision and Ophthalmology Annual Meeting (Fort Lauderdale, FL, 2012).

Supplementary Material (2)

» Media 1: MOV (1686 KB)     
» Media 2: MOV (1682 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Area of analysis. Top: Conventional fundus image (color) overlaid with an adaptive optics montage of the capillary network surrounding the foveal avascular zone (grayscale). A, V denotes arteries and veins. Bottom: Shows inset demarcated by yellow border in top. Arrows indicate direction of erythrocyte flow. Lower case letters denote capillary segments discussed in the text below. This is a region of high confluence, with 2 neighboring arterioles (A) delivering blood in opposing directions.

Fig. 2
Fig. 2

Sample of our imaging data. Top: a single frame at 593 nm, 1° nasal and 2° inferior to the foveal center, close to the edge of the foveal avascular zone. Bottom: Motion contrast enhancement of the same area, based on 60 frames of data (130 ms). The sequence itself is shown in Media 1.

Fig. 3
Fig. 3

Phantom data set for validation of measured velocities, consisting of 7 modeled capillaries. Grayscale: a single frame from the phantom data sequence. Modeled erythrocyte clusters are visible as dark rectangular patches. Color overlay: Velocity vectors in each region of interest. Speed is denoted both by arrow length and color. Numbers: median velocity ± median absolute difference (true velocity). Units are mm/s. Velocity measurements were derived by considering a line of points (minimum 10 per vessel) that were closest to the vessel center.

Fig. 4
Fig. 4

PIV analysis (median velocity) from the same image sequence as in Fig. 2 (Media 1). Imaging wavelength was 593 nm, imaged area was 1° nasal and 2° inferior to the foveal center. Diameter of displayed region is ~0.8 x 0.2°. Grayscale: motion contrast enhanced “division” image [38] from this sequence. Color arrows: Velocity vectors in each region of interest. Speed is denoted both by arrow length and color. Letters: Labeled capillary segments referred to in the text; labels correspond to those in Fig. 1.

Fig. 5
Fig. 5

PIV analysis (standard deviation) from an image sequence showing marked variability of flow over time, as well as location. The corresponding sequence is shown in Media 2. Grayscale: motion contrast enhanced “division” image [38] from this sequence. Color arrows: Standard deviation of velocity in time, using temporal windows 15 frames (33 ms) long. Standard deviation is denoted both by arrow length and color. Letters: Labeled capillary segments referred to in the text; labels correspond to those in Fig. 1.

Fig. 6
Fig. 6

Velocity in each capillary segment in the same image sequence shown in Fig. 5 (Media 2). Velocity generally increased throughout the course of this sequence. Blue plots indicate capillary segments e, g, m and w that were present in all sequences, and are analyzed in Fig. 7. Red plots indicate segments a (asterisks) and u (crosses), which are consecutive and are referred to in the text.

Fig. 7
Fig. 7

Velocity in the same 4 capillary segments across 5 image sequences. Each panel corresponds to the same capillary segment, and each plot color corresponds to the same image sequence.

Metrics