Abstract

Diffuse reflectance spectroscopy (DRS) is a well-established method to quantitatively distinguish between benign and cancerous tissue for tumor margin assessment. Current multipixel DRS margin assessment tools are bulky fiber-based probes that have limited scalability. Reported herein is a new approach to multipixel DRS probe design, which utilizes direct detection of the DRS signal by using optimized custom photodetectors in direct contact with the tissue. This first fiberless DRS imaging system for tumor margin assessment consists of a 4 × 4 array of annular silicon photodetectors and a constrained free-space light delivery tube optimized to deliver light across a 256 mm2 imaging area. This system has 4.5 mm spatial resolution. The signal-to-noise ratio measured for normal and malignant breast tissue-mimicking phantoms was 35 dB to 45 dB for λ = 470 nm to 600 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
    [CrossRef] [PubMed]
  2. L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
    [CrossRef] [PubMed]
  3. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997).
    [CrossRef] [PubMed]
  4. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  5. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  6. N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
    [CrossRef] [PubMed]
  7. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
    [CrossRef] [PubMed]
  8. SUROS, “New method for breast cancer diagnosis,” 2003, http://www2.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/11-25-2003/0002065545&EDATE= .
  9. L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
    [CrossRef] [PubMed]
  10. T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg.192(4), 509–512 (2006).
    [CrossRef] [PubMed]
  11. G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005).
    [PubMed]
  12. T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
    [CrossRef] [PubMed]
  13. H. L. Fu, B. Yu, J. Y. Lo, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A low-cost, portable, and quantitative spectral imaging system for application to biological tissues,” Opt. Express18(12), 12630–12645 (2010).
    [CrossRef] [PubMed]
  14. J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009).
    [CrossRef] [PubMed]
  15. B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
    [CrossRef] [PubMed]
  16. S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010).
    [CrossRef]
  17. J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.
  18. J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
    [CrossRef]
  19. S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era, Vol. 1: Process Technology (Lattice, 1999).
  20. M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001).
    [CrossRef]
  21. S. Dhar, J. Y. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2011), pp. 440–443.
  22. S. Dhar, J. Y. Lo, B. Yu, T. Tyler, M. A. Brooke, T. F. Kuech, N. Ramanujam, and N. M. Jokerst, “A custom wide-field spectral imager for breast cancer margin assessment,” in 2011 IEEE Photonics Conference (PHO) (IEEE, 2011), pp. 798–799.
  23. Asahi Spectra, “MAX-302 xenon light source 300W technical information,” http://www.gmp.ch/htmlarea/pdf/asahi_pdf/max302techinfo.pdf .
  24. E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).
  25. Texas Instruments, “IVC102 precision switched integrator transimpedance amplifier,” http://www.ti.com/product/ivc102 .
  26. PICAXE microcontroller, available from http://www.picaxe.com/ .
  27. T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).
  28. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  29. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed (Pergamon, Oxford, 1980).
  30. T. Bååk, “Silicon oxynitride; a material for GRIN optics,” Appl. Opt.21(6), 1069–1072 (1982).
    [CrossRef] [PubMed]

2012 (2)

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

2010 (3)

2009 (3)

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

2008 (3)

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005).
[PubMed]

2001 (1)

M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001).
[CrossRef]

1997 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

1982 (1)

Bååk, T.

Balch, G. C.

G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005).
[PubMed]

Barman, I.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Barry, W. T.

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Bellafiore, F. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Bender, J. E.

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
[CrossRef] [PubMed]

Birkelund, K.

S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010).
[CrossRef]

Boppart, S. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Brooke, M. A.

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

Brown, J. Q.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Brown, J.Q.

J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.

Bultman, J. H.

M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001).
[CrossRef]

Bydlon, T. M.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Chaney, E. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Contini, D.

Cuevas, A.

M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001).
[CrossRef]

Dasari, R. R.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Dhar, S.

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.

Dingari, N. C.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Duun, S.

S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010).
[CrossRef]

Feld, M. S.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Fitzmaurice, M.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Fu, H. L.

Gallagher, J.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Geradts, J.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Haahr, R. G.

S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010).
[CrossRef]

Hansen, O.

S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010).
[CrossRef]

Huston, T. L.

T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg.192(4), 509–512 (2006).
[CrossRef] [PubMed]

Jacobs, L.

L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Johnson, P. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Jokerst, N. M.

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

Jokerst, N.M.

J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.

Junker, M. K.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

Kang, J. W.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Kelley, M. C.

G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005).
[PubMed]

Kennedy, S. A.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Kerr, M. J.

M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001).
[CrossRef]

Kotynek, J. G.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Kuech, T. F.

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

H. L. Fu, B. Yu, J. Y. Lo, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A low-cost, portable, and quantitative spectral imaging system for application to biological tissues,” Opt. Express18(12), 12630–12645 (2010).
[CrossRef] [PubMed]

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
[CrossRef] [PubMed]

Lo, J. Y.

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

H. L. Fu, B. Yu, J. Y. Lo, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A low-cost, portable, and quantitative spectral imaging system for application to biological tissues,” Opt. Express18(12), 12630–12645 (2010).
[CrossRef] [PubMed]

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
[CrossRef] [PubMed]

Lo, J.Y.

J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.

Lue, N.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Martelli, F.

Mithani, S. K.

G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005).
[PubMed]

Nguyen, F. T.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

Oliphant, U. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Osborne, M. P.

T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg.192(4), 509–512 (2006).
[CrossRef] [PubMed]

Palmer, G. M.

Pigalarga, R.

T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg.192(4), 509–512 (2006).
[CrossRef] [PubMed]

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

Ramanujam, N.

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

H. L. Fu, B. Yu, J. Y. Lo, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A low-cost, portable, and quantitative spectral imaging system for application to biological tissues,” Opt. Express18(12), 12630–12645 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Richards, L. M.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

Rowland, K. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Schmidt, J.

M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001).
[CrossRef]

Simpson, J. F.

G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005).
[PubMed]

Thomsen, E. V.

S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010).
[CrossRef]

Tousimis, E.

T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg.192(4), 509–512 (2006).
[CrossRef] [PubMed]

Tunnell, J. W.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Wilke, L. G.

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Yu, B.

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

T. M. Bydlon, S. A. Kennedy, L. M. Richards, J. Q. Brown, B. Yu, M. K. Junker, J. Gallagher, J. Geradts, L. G. Wilke, and N. Ramanujam, “Performance metrics of an optical spectral imaging system for intra-operative assessment of breast tumor margins,” Opt. Express18(8), 8058–8076 (2010).
[CrossRef] [PubMed]

H. L. Fu, B. Yu, J. Y. Lo, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A low-cost, portable, and quantitative spectral imaging system for application to biological tissues,” Opt. Express18(12), 12630–12645 (2010).
[CrossRef] [PubMed]

J. Y. Lo, B. Yu, H. L. Fu, J. E. Bender, G. M. Palmer, T. F. Kuech, and N. Ramanujam, “A strategy for quantitative spectral imaging of tissue absorption and scattering using light emitting diodes and photodiodes,” Opt. Express17(3), 1372–1384 (2009).
[CrossRef] [PubMed]

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
[CrossRef] [PubMed]

J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.

Yu, C.-C.

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

Zaccanti, G.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Zysk, A. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Am. J. Surg. (2)

T. L. Huston, R. Pigalarga, M. P. Osborne, and E. Tousimis, “The influence of additional surgical margins on the total specimen volume excised and the reoperative rate after breast-conserving surgery,” Am. J. Surg.192(4), 509–512 (2006).
[CrossRef] [PubMed]

L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009).
[CrossRef] [PubMed]

Am. Surg. (1)

G. C. Balch, S. K. Mithani, J. F. Simpson, and M. C. Kelley, “Accuracy of intraoperative gross examination of surgical margin status in women undergoing partial mastectomy for breast malignancy,” Am. Surg.71(1), 22–27, discussion 27–28 (2005).
[PubMed]

Ann. Surg. Oncol. (1)

L. Jacobs, “Positive margins: the challenge continues for breast surgeons,” Ann. Surg. Oncol.15(5), 1271–1272 (2008).
[CrossRef] [PubMed]

Appl. Opt. (4)

Cancer Res. (1)

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res.69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

M. J. Kerr, J. Schmidt, A. Cuevas, and J. H. Bultman, “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide,” J. Appl. Phys.89(7), 3821–3826 (2001).
[CrossRef]

J. Biomed. Opt. (2)

B. Yu, J. Y. Lo, T. F. Kuech, G. M. Palmer, J. E. Bender, and N. Ramanujam, “Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo,” J. Biomed. Opt.13(6), 060505 (2008).
[CrossRef] [PubMed]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

S. Duun, R. G. Haahr, O. Hansen, K. Birkelund, and E. V. Thomsen, “High quantum efficiency annular backside silicon photodiodes for reflectance pulse oximetry in wearable wireless body sensors,” J. Micromech. Microeng.20(7), 075020 (2010).
[CrossRef]

Opt. Express (3)

PLoS ONE (2)

N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012).
[CrossRef] [PubMed]

T. M. Bydlon, W. T. Barry, S. A. Kennedy, J. Q. Brown, J. Gallagher, L. G. Wilke, J. Geradts, and N. Ramanujam, “Advancing optical imaging for breast margin assessment: an analysis of excisional time, cautery, and and patent blue dye on underlying sources of contrast,” PLoS ONE (to be published).

Proc. SPIE (1)

J. Y. Lo, S. Dhar, B. Yu, M. A. Brooke, T. F. Kuech, N. M. Jokerst, and N. Ramanujam, “Diffuse reflectance spectral imaging for breast tumor margin assessment,” Proc. SPIE8214, 821407 (2012).
[CrossRef]

Other (10)

S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era, Vol. 1: Process Technology (Lattice, 1999).

S. Dhar, J. Y. Lo, B. Yu, M. A. Brooke, N. Ramanujam, and N. M. Jokerst, “Custom annular photodetector arrays for breast cancer margin assessment using diffuse reflectance spectroscopy,” in 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2011), pp. 440–443.

S. Dhar, J. Y. Lo, B. Yu, T. Tyler, M. A. Brooke, T. F. Kuech, N. Ramanujam, and N. M. Jokerst, “A custom wide-field spectral imager for breast cancer margin assessment,” in 2011 IEEE Photonics Conference (PHO) (IEEE, 2011), pp. 798–799.

Asahi Spectra, “MAX-302 xenon light source 300W technical information,” http://www.gmp.ch/htmlarea/pdf/asahi_pdf/max302techinfo.pdf .

E. Hecht, Optics, 4th ed. (Addison Wesley, 2001).

Texas Instruments, “IVC102 precision switched integrator transimpedance amplifier,” http://www.ti.com/product/ivc102 .

PICAXE microcontroller, available from http://www.picaxe.com/ .

SUROS, “New method for breast cancer diagnosis,” 2003, http://www2.prnewswire.com/cgi-bin/stories.pl?ACCT=104&STORY=/www/story/11-25-2003/0002065545&EDATE= .

J.Y. Lo, J.Q. Brown, S. Dhar, B. Yu, N.M. Jokerst, and N. Ramanujam, “Wavelength optimization for quantitative spectral imaging of breast tumor margins,” submitted to PLoS ONE.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th ed (Pergamon, Oxford, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the DRS imaging system and cross-section view of a single PD in the array (b) Photograph of DRS imaging system (c) Photograph of the customized DRS imaging probe with a fiberless quartz light delivery tube and an annular custom silicon photodiode array.

Fig. 2
Fig. 2

(a) Measured and predicted spectral response of fabricated 4 × 4 array of silicon PDs. Error bars are ±1σ. (b) Photograph of fabricated and packaged array (inset) Photomicrograph of one pixel in the annular PD array.

Fig. 3
Fig. 3

(a) Power throughput through PD apertures using a reflective tube for light delivery, simulated in ZEMAX® (b) Average measured power throughput for 4 center pixels, 4 corner pixels and 8 side pixels using a 70 mm long reflective tube (c) Average measured power throughput for 4 center pixels, 4 corner pixels and 8 side pixels using a 70 mm long absorbing tube. Error bars are ±1σ, and the spectral content reflects that of the source.

Fig. 4
Fig. 4

(a) Calculated SNR for normal tissue phantom tested with a reflective tube for light delivery using 10 ms integration time in ITIA read-out circuit; (b) Calculated SNR for malignant tissue phantom tested with an absorbing tube for light delivery using 100 ms integration time in ITIA readout circuit. Error bars are ±1σ for the mean SNR across 13 pixels.

Fig. 5
Fig. 5

Contour lines of simulated crosstalk as a function of tissue optical properties for the probe geometry reported herein. This crosstalk was simulated using a forward Monte-Carlo model for the center pixel of the imaging array illuminated using (a) a reflective tube and (b) an absorbing tube.

Fig. 6
Fig. 6

(a) Crosstalk measured for a center pixel of the imaging array on normal tissue mimicking phantom using a reflective and an absorbing tube; (b) Crosstalk measured for a side pixel of the imaging array on normal tissue mimicking phantom using a reflective and an absorbing tube; (c) Measured and simulated crosstalk for a center pixel of the imaging array on a normal tissue mimicking phantom using an absorbing tube; (d) Measured and simulated crosstalk for a side pixel of the imaging array on a normal tissue mimicking phantom using an absorbing tube.

Tables (2)

Tables Icon

Table 1 Optical properties of tissue phantoms

Tables Icon

Table 2 System level comparison of the clinically tested bench-top system [12] to the system reported herein

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Crosstalk(%)= Iph,APIIph,SPI Iph,API ×100,

Metrics