S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on
structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).
[Crossref]
[PubMed]
M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection
of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion
calculations for photon migration in homogeneous and heterogeneous
tissues,” Phys. Med. Biol. 43(5), 1285–1302 (1998).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe
photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front
of migrating MDCK cells,” Mol. Biol. Cell 19(10), 4213–4223 (2008).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical
tomography,” Opt. Lett. 23(11), 882–884 (1998).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time
domain FLIM at high spatial resolution in living cells,” Biophys. J. 95(6), 2976–2988 (2008).
[Crossref]
[PubMed]
T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for
chloride: capturing chloride transients in cultured hippocampal
neurons,” Neuron 27(3), 447–459 (2000).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic
multiplexing,” J. Biomed. Opt. 15(4), 046011 (2010).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion
calculations for photon migration in homogeneous and heterogeneous
tissues,” Phys. Med. Biol. 43(5), 1285–1302 (1998).
[Crossref]
[PubMed]
H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET
analysis,” Microsc. Res. Tech. 69(3), 196–206 (2006).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging
microscopy data,” Biophys. J. 78(4), 2127–2137 (2000).
[Crossref]
[PubMed]
B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence
microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on
structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic
multiplexing,” J. Biomed. Opt. 15(4), 046011 (2010).
[Crossref]
[PubMed]
M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal
kinetics and high fluorescence change,” Biophys. J. 90(5), 1790–1796 (2006).
[Crossref]
[PubMed]
B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell
cytotoxic activity during adoptive T cell therapy in mice,” J.
Clin. Invest. 118(4), 1390–1397 (2008).
[Crossref]
[PubMed]
B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell
cytotoxic activity during adoptive T cell therapy in mice,” J.
Clin. Invest. 118(4), 1390–1397 (2008).
[Crossref]
[PubMed]
N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon
scatter for diffuse optical tomography,” J. Biomed.
Opt. 15(6), 065006 (2010).
[Crossref]
[PubMed]
S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on
structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref]
[PubMed]
B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell
cytotoxic activity during adoptive T cell therapy in mice,” J.
Clin. Invest. 118(4), 1390–1397 (2008).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield
fluorescence molecular tomography,” J. Biomed. Opt. 17(10), 106009 (2012).
[Crossref]
J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence
molecular tomography-computational efficiency,” Med.
Phys. 38(10), 5788–5798 (2011).
[Crossref]
[PubMed]
J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic
imaging with lifetime multiplexing using time gates,” Biomed.
Opt. Express 2(4), 871–886 (2011).
[Crossref]
[PubMed]
V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for
functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express 1(1), 143–156 (2010).
[Crossref]
[PubMed]
J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with
patterned-light illumination and detection,” Opt.
Lett. 35(13), 2121–2123 (2010).
[Crossref]
[PubMed]
J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body
functional imaging in small animals,” Opt. Express 17(22), 19566–19579 (2009).
[Crossref]
[PubMed]
H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET
analysis,” Microsc. Res. Tech. 69(3), 196–206 (2006).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time
domain FLIM at high spatial resolution in living cells,” Biophys. J. 95(6), 2976–2988 (2008).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection
tomography,” Biomed. Opt. Express 2(5), 1340–1350 (2011).
[Crossref]
[PubMed]
M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection
of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored
protein at the apical surface of MDCK cells examined at a resolution of <100 A using
imaging fluorescence resonance energy transfer,” J. Cell
Biol. 142(1), 69–84 (1998).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection
tomography,” Biomed. Opt. Express 2(5), 1340–1350 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal
kinetics and high fluorescence change,” Biophys. J. 90(5), 1790–1796 (2006).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence
resonance energy-transfer parameters,” Opt. Lett. 35(9), 1314–1316 (2010).
[Crossref]
[PubMed]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence
resonance energy transfer parameters,” J. Opt. Soc. Am.
A 26(8), 1805–1813 (2009).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal
kinetics and high fluorescence change,” Biophys. J. 90(5), 1790–1796 (2006).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal
kinetics and high fluorescence change,” Biophys. J. 90(5), 1790–1796 (2006).
[Crossref]
[PubMed]
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).
[Crossref]
[PubMed]
A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion
calculations for photon migration in homogeneous and heterogeneous
tissues,” Phys. Med. Biol. 43(5), 1285–1302 (1998).
[Crossref]
[PubMed]
T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front
of migrating MDCK cells,” Mol. Biol. Cell 19(10), 4213–4223 (2008).
[Crossref]
[PubMed]
B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence
microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref]
[PubMed]
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).
[Crossref]
[PubMed]
J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield
fluorescence molecular tomography,” J. Biomed. Opt. 17(10), 106009 (2012).
[Crossref]
J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence
molecular tomography-computational efficiency,” Med.
Phys. 38(10), 5788–5798 (2011).
[Crossref]
[PubMed]
J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic
imaging with lifetime multiplexing using time gates,” Biomed.
Opt. Express 2(4), 871–886 (2011).
[Crossref]
[PubMed]
V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for
functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express 1(1), 143–156 (2010).
[Crossref]
[PubMed]
J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with
patterned-light illumination and detection,” Opt.
Lett. 35(13), 2121–2123 (2010).
[Crossref]
[PubMed]
S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on
structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref]
[PubMed]
J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body
functional imaging in small animals,” Opt. Express 17(22), 19566–19579 (2009).
[Crossref]
[PubMed]
E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET
microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).
[Crossref]
[PubMed]
E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET
microscopy,” Curr. Opin. Chem. Biol. 10(5), 409–416 (2006).
[Crossref]
[PubMed]
N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of
cellular FLIM/FRET measurements,” J. Biomed. Opt. 17(2), 026013 (2012).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored
protein at the apical surface of MDCK cells examined at a resolution of <100 A using
imaging fluorescence resonance energy transfer,” J. Cell
Biol. 142(1), 69–84 (1998).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection
of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref]
[PubMed]
T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front
of migrating MDCK cells,” Mol. Biol. Cell 19(10), 4213–4223 (2008).
[Crossref]
[PubMed]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence
resonance energy-transfer parameters,” Opt. Lett. 35(9), 1314–1316 (2010).
[Crossref]
[PubMed]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence
resonance energy transfer parameters,” J. Opt. Soc. Am.
A 26(8), 1805–1813 (2009).
[Crossref]
[PubMed]
S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic
multiplexing,” J. Biomed. Opt. 15(4), 046011 (2010).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for
chloride: capturing chloride transients in cultured hippocampal
neurons,” Neuron 27(3), 447–459 (2000).
[Crossref]
[PubMed]
N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced
activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third
edition,” J. Biomed. Opt. 13(2), 029901 (2008).
[Crossref]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell
cytotoxic activity during adoptive T cell therapy in mice,” J.
Clin. Invest. 118(4), 1390–1397 (2008).
[Crossref]
[PubMed]
S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on
structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[Crossref]
[PubMed]
J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with
patterned-light illumination and detection,” Opt.
Lett. 35(13), 2121–2123 (2010).
[Crossref]
[PubMed]
H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug
delivery,” Med. Res. Rev. 22(3), 225–250 (2002).
[Crossref]
[PubMed]
I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of
fluorescence resonance energy transfer for monitoring cellular
dynamics,” Biotechnol. Lett. 28(24), 1971–1982 (2006).
[Crossref]
[PubMed]
K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe
photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[Crossref]
[PubMed]
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).
[Crossref]
[PubMed]
M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal
kinetics and high fluorescence change,” Biophys. J. 90(5), 1790–1796 (2006).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third
edition,” J. Biomed. Opt. 13(2), 029901 (2008).
[Crossref]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front
of migrating MDCK cells,” Mol. Biol. Cell 19(10), 4213–4223 (2008).
[Crossref]
[PubMed]
N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced
activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001).
[Crossref]
[PubMed]
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection
tomography,” Biomed. Opt. Express 2(5), 1340–1350 (2011).
[Crossref]
[PubMed]
N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced
activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001).
[Crossref]
[PubMed]
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).
[Crossref]
[PubMed]
N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced
activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001).
[Crossref]
[PubMed]
A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based
biosensor “LIBRA” for the identification of ligands of the inositol
1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta 1760(8), 1274–1280 (2006).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced
activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based
biosensor “LIBRA” for the identification of ligands of the inositol
1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta 1760(8), 1274–1280 (2006).
[Crossref]
[PubMed]
N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon
scatter for diffuse optical tomography,” J. Biomed.
Opt. 15(6), 065006 (2010).
[Crossref]
[PubMed]
M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection
of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref]
[PubMed]
T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front
of migrating MDCK cells,” Mol. Biol. Cell 19(10), 4213–4223 (2008).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection
of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref]
[PubMed]
C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with
mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008).
[Crossref]
[PubMed]
V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of
whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref]
[PubMed]
A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of
heterogeneities: study of the normalized Born ratio,” IEEE
Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref]
[PubMed]
V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence
reconstruction of diffuse media by use of a normalized Born
approximation,” Opt. Lett. 26(12), 893–895 (2001).
[Crossref]
[PubMed]
N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced
activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time
domain FLIM at high spatial resolution in living cells,” Biophys. J. 95(6), 2976–2988 (2008).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of
cellular FLIM/FRET measurements,” J. Biomed. Opt. 17(2), 026013 (2012).
[Crossref]
[PubMed]
H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET
analysis,” Microsc. Res. Tech. 69(3), 196–206 (2006).
[Crossref]
[PubMed]
H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM
microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005).
[Crossref]
[PubMed]
C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with
mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of
fluorescence resonance energy transfer for monitoring cellular
dynamics,” Biotechnol. Lett. 28(24), 1971–1982 (2006).
[Crossref]
[PubMed]
C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with
mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug
delivery,” Med. Res. Rev. 22(3), 225–250 (2002).
[Crossref]
[PubMed]
N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of
cellular FLIM/FRET measurements,” J. Biomed. Opt. 17(2), 026013 (2012).
[Crossref]
[PubMed]
S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic
multiplexing,” J. Biomed. Opt. 15(4), 046011 (2010).
[Crossref]
[PubMed]
C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with
mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008).
[Crossref]
[PubMed]
M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal
kinetics and high fluorescence change,” Biophys. J. 90(5), 1790–1796 (2006).
[Crossref]
[PubMed]
V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of
whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref]
[PubMed]
A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of
heterogeneities: study of the normalized Born ratio,” IEEE
Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based
biosensor “LIBRA” for the identification of ligands of the inositol
1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta 1760(8), 1274–1280 (2006).
[Crossref]
[PubMed]
N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of
cellular FLIM/FRET measurements,” J. Biomed. Opt. 17(2), 026013 (2012).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of
heterogeneities: study of the normalized Born ratio,” IEEE
Trans. Med. Imaging 24(10), 1377–1386 (2005).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging
microscopy data,” Biophys. J. 78(4), 2127–2137 (2000).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
L. Stryer, “Fluorescence energy transfer as a spectroscopic
ruler,” Annu. Rev. Biochem. 47(1), 819–846 (1978).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a
synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with
Guanine quartet-potassium ion complex formation,” J. Am. Chem.
Soc. 124(48), 14286–14287 (2002).
[Crossref]
[PubMed]
H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a
synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with
Guanine quartet-potassium ion complex formation,” J. Am. Chem.
Soc. 124(48), 14286–14287 (2002).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based
biosensor “LIBRA” for the identification of ligands of the inositol
1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta 1760(8), 1274–1280 (2006).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based
biosensor “LIBRA” for the identification of ligands of the inositol
1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta 1760(8), 1274–1280 (2006).
[Crossref]
[PubMed]
S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time
domain FLIM at high spatial resolution in living cells,” Biophys. J. 95(6), 2976–2988 (2008).
[Crossref]
[PubMed]
I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of
fluorescence resonance energy transfer for monitoring cellular
dynamics,” Biotechnol. Lett. 28(24), 1971–1982 (2006).
[Crossref]
[PubMed]
A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin,” Nature 388(6645), 882–887 (1997).
[Crossref]
[PubMed]
H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a
synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with
Guanine quartet-potassium ion complex formation,” J. Am. Chem.
Soc. 124(48), 14286–14287 (2002).
[Crossref]
[PubMed]
N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon
scatter for diffuse optical tomography,” J. Biomed.
Opt. 15(6), 065006 (2010).
[Crossref]
[PubMed]
N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer
(TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the
efficiency of targeted therapy using monoclonal antibodies,” J.
Biol. Chem. 286(13), 11337–11345 (2011).
[Crossref]
[PubMed]
M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive
probes,” Biophys. J. 100(8), 2063–2072 (2011).
[Crossref]
[PubMed]
J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic
imaging with lifetime multiplexing using time gates,” Biomed.
Opt. Express 2(4), 871–886 (2011).
[Crossref]
[PubMed]
V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for
functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express 1(1), 143–156 (2010).
[Crossref]
[PubMed]
J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with
patterned-light illumination and detection,” Opt.
Lett. 35(13), 2121–2123 (2010).
[Crossref]
[PubMed]
P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging
microscopy data,” Biophys. J. 78(4), 2127–2137 (2000).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with
mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008).
[Crossref]
[PubMed]
H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET
analysis,” Microsc. Res. Tech. 69(3), 196–206 (2006).
[Crossref]
[PubMed]
H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM
microscopy,” Curr. Opin. Biotechnol. 16(1), 19–27 (2005).
[Crossref]
[PubMed]
V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of
whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref]
[PubMed]
S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated
multiwell-plate high-content analysis, multiplexed readouts and application in
situ,” ChemPhysChem 12(3), 609–626 (2011).
[Crossref]
[PubMed]
V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence
resonance energy-transfer parameters,” Opt. Lett. 35(9), 1314–1316 (2010).
[Crossref]
[PubMed]
V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence
resonance energy transfer parameters,” J. Opt. Soc. Am.
A 26(8), 1805–1813 (2009).
[Crossref]
[PubMed]
M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection
of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A. 105(49), 19126–19131 (2008).
[Crossref]
[PubMed]
V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of
whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[Crossref]
[PubMed]
V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence
reconstruction of diffuse media by use of a normalized Born
approximation,” Opt. Lett. 26(12), 893–895 (2001).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET
probe expressed in mouse,” Biomed. Opt. Express 2(7), 1907–1917 (2011).
[Crossref]
[PubMed]
N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced
activation of Ras and Rap1,” Nature 411(6841), 1065–1068 (2001).
[Crossref]
[PubMed]
K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe
photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[Crossref]
[PubMed]
T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front
of migrating MDCK cells,” Mol. Biol. Cell 19(10), 4213–4223 (2008).
[Crossref]
[PubMed]
B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence
microscopy,” Annu. Rev. Biochem. 78(1), 993–1016 (2009).
[Crossref]
[PubMed]