Abstract

Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009).
    [CrossRef] [PubMed]
  2. L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem.47(1), 819–846 (1978).
    [CrossRef] [PubMed]
  3. E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol.10(5), 409–416 (2006).
    [CrossRef] [PubMed]
  4. A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
    [CrossRef] [PubMed]
  5. M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
    [CrossRef] [PubMed]
  6. H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc.124(48), 14286–14287 (2002).
    [CrossRef] [PubMed]
  7. T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron27(3), 447–459 (2000).
    [CrossRef] [PubMed]
  8. N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
    [CrossRef] [PubMed]
  9. A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
    [CrossRef] [PubMed]
  10. T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
    [CrossRef] [PubMed]
  11. I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett.28(24), 1971–1982 (2006).
    [CrossRef] [PubMed]
  12. S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
    [CrossRef] [PubMed]
  13. J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third edition,” J. Biomed. Opt.13(2), 029901 (2008).
    [CrossRef]
  14. H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
    [CrossRef] [PubMed]
  15. B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008).
    [CrossRef] [PubMed]
  16. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express2(5), 1340–1350 (2011).
    [CrossRef] [PubMed]
  17. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
    [CrossRef] [PubMed]
  18. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  19. V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009).
    [CrossRef] [PubMed]
  20. V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett.35(9), 1314–1316 (2010).
    [CrossRef] [PubMed]
  21. J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011).
    [CrossRef] [PubMed]
  22. A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer,” J. Cell Biol.142(1), 69–84 (1998).
    [CrossRef] [PubMed]
  23. H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006).
    [CrossRef] [PubMed]
  24. S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008).
    [CrossRef] [PubMed]
  25. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
    [CrossRef] [PubMed]
  26. J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express2(4), 871–886 (2011).
    [CrossRef] [PubMed]
  27. V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010).
    [CrossRef] [PubMed]
  28. C. Chang and M. Mycek, "Improving precision in time-gated FLIM for low-light live-cell imaging," in Molecular Imaging II, K. Licha and C. Lin, eds., Vol. 7370 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), paper 7370_09.
  29. S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
    [CrossRef] [PubMed]
  30. J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010).
    [CrossRef] [PubMed]
  31. J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express17(22), 19566–19579 (2009).
    [CrossRef] [PubMed]
  32. N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt.15(6), 065006 (2010).
    [CrossRef] [PubMed]
  33. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998).
    [CrossRef] [PubMed]
  34. K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett.64(22), 2647–2650 (1990).
    [CrossRef] [PubMed]
  35. J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt.17(10), 106009 (2012).
    [CrossRef]
  36. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett.23(11), 882–884 (1998).
    [CrossRef] [PubMed]
  37. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
    [CrossRef] [PubMed]
  38. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
    [CrossRef] [PubMed]
  39. P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78(4), 2127–2137 (2000).
    [CrossRef] [PubMed]
  40. N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012).
    [CrossRef] [PubMed]
  41. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Time-resolved imaging on a realistic tissue phantom: μ(s)’ and μ(a) images versus time-integrated images,” Appl. Opt.35(22), 4533–4540 (1996).
    [CrossRef] [PubMed]
  42. J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys.38(10), 5788–5798 (2011).
    [CrossRef] [PubMed]
  43. S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010).
    [CrossRef] [PubMed]
  44. M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
    [CrossRef] [PubMed]
  45. N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
    [CrossRef] [PubMed]
  46. A. Periasamy, H. Wallrabe, Y. Chen, and M. Barroso, “Quantitation of protein–protein interactions: confocal FRET microscopy,” in Biophysical Tools for Biologists, Volume Two, Vol. 89 of Methods in Cell Biology (Academic, 2008), pp. 569–598.
  47. H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev.22(3), 225–250 (2002).
    [CrossRef] [PubMed]

2012 (2)

J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt.17(10), 106009 (2012).
[CrossRef]

N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012).
[CrossRef] [PubMed]

2011 (7)

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys.38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011).
[CrossRef] [PubMed]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express2(4), 871–886 (2011).
[CrossRef] [PubMed]

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express2(5), 1340–1350 (2011).
[CrossRef] [PubMed]

2010 (6)

V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010).
[CrossRef] [PubMed]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
[CrossRef] [PubMed]

J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010).
[CrossRef] [PubMed]

V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett.35(9), 1314–1316 (2010).
[CrossRef] [PubMed]

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt.15(6), 065006 (2010).
[CrossRef] [PubMed]

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express17(22), 19566–19579 (2009).
[CrossRef] [PubMed]

V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009).
[CrossRef] [PubMed]

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009).
[CrossRef] [PubMed]

2008 (6)

B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
[CrossRef] [PubMed]

J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third edition,” J. Biomed. Opt.13(2), 029901 (2008).
[CrossRef]

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008).
[CrossRef] [PubMed]

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

2006 (5)

H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006).
[CrossRef] [PubMed]

I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett.28(24), 1971–1982 (2006).
[CrossRef] [PubMed]

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol.10(5), 409–416 (2006).
[CrossRef] [PubMed]

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
[CrossRef] [PubMed]

2005 (3)

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

2002 (2)

H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc.124(48), 14286–14287 (2002).
[CrossRef] [PubMed]

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev.22(3), 225–250 (2002).
[CrossRef] [PubMed]

2001 (2)

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
[CrossRef] [PubMed]

2000 (2)

P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78(4), 2127–2137 (2000).
[CrossRef] [PubMed]

T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron27(3), 447–459 (2000).
[CrossRef] [PubMed]

1998 (3)

S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett.23(11), 882–884 (1998).
[CrossRef] [PubMed]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998).
[CrossRef] [PubMed]

A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer,” J. Cell Biol.142(1), 69–84 (1998).
[CrossRef] [PubMed]

1997 (1)

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

1996 (1)

1990 (1)

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett.64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

1978 (1)

L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem.47(1), 819–846 (1978).
[CrossRef] [PubMed]

Abran, M.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
[CrossRef] [PubMed]

Achilefu, S.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Adams, J. A.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

Aikawa, E.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Akers, W.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Alcouffe, R. E.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998).
[CrossRef] [PubMed]

Alexandrov, Y.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Alfano, R. R.

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett.64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Alibhai, D.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Aoki, K.

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

Arridge, S. R.

Audugé, N.

S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008).
[CrossRef] [PubMed]

Augustine, G. J.

T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron27(3), 447–459 (2000).
[CrossRef] [PubMed]

Azria, D.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Bacskai, B. J.

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010).
[CrossRef] [PubMed]

Barbacow, K.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Barbour, R. L.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998).
[CrossRef] [PubMed]

Barroso, M.

H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006).
[CrossRef] [PubMed]

Bascoul-Mollevi, C.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Bastiaens, P. I.

P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78(4), 2127–2137 (2000).
[CrossRef] [PubMed]

Bates, M.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009).
[CrossRef] [PubMed]

Bazin, H.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Bélanger, S.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
[CrossRef] [PubMed]

Berezin, M. Y.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Boas, D. A.

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010).
[CrossRef] [PubMed]

Borst, A.

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

Bouman, C. A.

V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009).
[CrossRef] [PubMed]

Bousso, P.

B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008).
[CrossRef] [PubMed]

Breart, B.

B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008).
[CrossRef] [PubMed]

Brock, J.

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt.15(6), 065006 (2010).
[CrossRef] [PubMed]

Bugeon, L.

Casanova, C.

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
[CrossRef] [PubMed]

Celli, S.

B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008).
[CrossRef] [PubMed]

Chardès, T.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Chen, J.

J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt.17(10), 106009 (2012).
[CrossRef]

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys.38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express2(4), 871–886 (2011).
[CrossRef] [PubMed]

J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010).
[CrossRef] [PubMed]

V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010).
[CrossRef] [PubMed]

J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express17(22), 19566–19579 (2009).
[CrossRef] [PubMed]

Chen, L.

Chen, Y.

H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006).
[CrossRef] [PubMed]

Coppey-Moisan, M.

S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008).
[CrossRef] [PubMed]

Crapez, E.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Cubeddu, R.

Culver, J. P.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Dallman, M. J.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express2(5), 1340–1350 (2011).
[CrossRef] [PubMed]

de Kleine, R. H.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Dunsby, C.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Edidin, M.

A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer,” J. Cell Biol.142(1), 69–84 (1998).
[CrossRef] [PubMed]

Elson, D. S.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

French, P. M. W.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express2(5), 1340–1350 (2011).
[CrossRef] [PubMed]

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011).
[CrossRef] [PubMed]

Friedrich, M. W.

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

Gaborit, N.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Gaind, V.

V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett.35(9), 1314–1316 (2010).
[CrossRef] [PubMed]

V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009).
[CrossRef] [PubMed]

Gandjbakhche, A.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Griesbeck, O.

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

Griffiths, G. L.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Guo, K.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Hajnal, J. V.

Heim, N.

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

Heim, R.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998).
[CrossRef] [PubMed]

Hikake, K.

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

Huang, B.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009).
[CrossRef] [PubMed]

Ikura, M.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

Intes, X.

J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt.17(10), 106009 (2012).
[CrossRef]

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys.38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express2(4), 871–886 (2011).
[CrossRef] [PubMed]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
[CrossRef] [PubMed]

J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010).
[CrossRef] [PubMed]

V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010).
[CrossRef] [PubMed]

J. Chen and X. Intes, “Time-gated perturbation Monte Carlo for whole body functional imaging in small animals,” Opt. Express17(22), 19566–19579 (2009).
[CrossRef] [PubMed]

Jares-Erijman, E. A.

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol.10(5), 409–416 (2006).
[CrossRef] [PubMed]

Jovin, T. M.

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol.10(5), 409–416 (2006).
[CrossRef] [PubMed]

Kamm, R. D.

N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012).
[CrossRef] [PubMed]

Katan, M.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Kelly, D.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Kennedy, G.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Kenworthy, A. K.

A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer,” J. Cell Biol.142(1), 69–84 (1998).
[CrossRef] [PubMed]

Kimberly, C.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Kirsch, D. G.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Kiyokawa, E.

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

Kularatne, S.

V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett.35(9), 1314–1316 (2010).
[CrossRef] [PubMed]

V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009).
[CrossRef] [PubMed]

Kumar, A. T. N.

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010).
[CrossRef] [PubMed]

Kumar, S.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Kuner, T.

T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron27(3), 447–459 (2000).
[CrossRef] [PubMed]

Kurokawa, K.

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

Lacombe, F.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Laine, R.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third edition,” J. Biomed. Opt.13(2), 029901 (2008).
[CrossRef]

Lam, E. W.-F.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Lamb, J. R.

Larbouret, C.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Lemaître, F.

B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008).
[CrossRef] [PubMed]

Lesage, F.

J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010).
[CrossRef] [PubMed]

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
[CrossRef] [PubMed]

Li, H.

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev.22(3), 225–250 (2002).
[CrossRef] [PubMed]

Li, I. T.

I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett.28(24), 1971–1982 (2006).
[CrossRef] [PubMed]

Lionheart, W. R. B.

Liu, F.

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett.64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Llopis, J.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

Low, P. S.

Mank, M.

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

Margineanu, A.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Masters, B. R.

J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third edition,” J. Biomed. Opt.13(2), 029901 (2008).
[CrossRef]

Mathis, G.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Matsuda, M.

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

McCaffery, J. M.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

McGinty, J.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express2(5), 1340–1350 (2011).
[CrossRef] [PubMed]

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011).
[CrossRef] [PubMed]

Miyawaki, A.

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

Mochizuki, N.

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

Morita, T.

A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
[CrossRef] [PubMed]

Munro, I.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Murray, E. J.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Nagai, T.

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

Neil, M. A. A.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Nezu, A.

A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
[CrossRef] [PubMed]

Niedre, M.

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt.15(6), 065006 (2010).
[CrossRef] [PubMed]

Niedre, M. J.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Nishioka, T.

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

Northdurft, R. E.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Ntziachristos, V.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
[CrossRef] [PubMed]

Ohba, Y.

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

Padilla-Parra, S.

S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008).
[CrossRef] [PubMed]

Pèlegrin, A.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Pelet, S.

N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012).
[CrossRef] [PubMed]

Periasamy, A.

H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006).
[CrossRef] [PubMed]

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

Perrimon, N.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
[CrossRef] [PubMed]

Peyrusson, F.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Pham, E.

I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett.28(24), 1971–1982 (2006).
[CrossRef] [PubMed]

Pifferi, A.

Pitsouli, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
[CrossRef] [PubMed]

Poul, M.-A.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Qian, Z. M.

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev.22(3), 225–250 (2002).
[CrossRef] [PubMed]

Rahim, N. A.

N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012).
[CrossRef] [PubMed]

Raymond, S. B.

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010).
[CrossRef] [PubMed]

Razansky, D.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
[CrossRef] [PubMed]

Reiff, D. F.

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Sardini, A.

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011).
[CrossRef] [PubMed]

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Shitara, A.

A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
[CrossRef] [PubMed]

So, P. T. C.

N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012).
[CrossRef] [PubMed]

Soloviev, V. Y.

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Squire, A.

P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78(4), 2127–2137 (2000).
[CrossRef] [PubMed]

Stamp, G.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Stryer, L.

L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem.47(1), 819–846 (1978).
[CrossRef] [PubMed]

Stuckey, D. W.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

J. McGinty, D. W. Stuckey, V. Y. Soloviev, R. Laine, M. Wylezinska-Arridge, D. J. Wells, S. R. Arridge, P. M. W. French, J. V. Hajnal, and A. Sardini, “In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse,” Biomed. Opt. Express2(7), 1907–1917 (2011).
[CrossRef] [PubMed]

Stuhmeier, F.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Takagi, M.

H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc.124(48), 14286–14287 (2002).
[CrossRef] [PubMed]

Takenaka, S.

H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc.124(48), 14286–14287 (2002).
[CrossRef] [PubMed]

Talbot, C.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Tanimura, A.

A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
[CrossRef] [PubMed]

Taroni, P.

Taylor, H.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Taylor, H. B.

Teng, B.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Tojyo, Y.

A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
[CrossRef] [PubMed]

Torricelli, A.

Tramier, M.

S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008).
[CrossRef] [PubMed]

Truong, K.

I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett.28(24), 1971–1982 (2006).
[CrossRef] [PubMed]

Tsien, R. Y.

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

Ueyama, H.

H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc.124(48), 14286–14287 (2002).
[CrossRef] [PubMed]

Valentini, G.

Valim, N.

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt.15(6), 065006 (2010).
[CrossRef] [PubMed]

Vallaghe, J.

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

Vasalatiy, O.

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Venugopal, V.

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express2(4), 871–886 (2011).
[CrossRef] [PubMed]

J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010).
[CrossRef] [PubMed]

V. Venugopal, J. Chen, and X. Intes, “Development of an optical imaging platform for functional imaging of small animals using wide-field excitation,” Biomed. Opt. Express1(1), 143–156 (2010).
[CrossRef] [PubMed]

Verveer, P. J.

P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78(4), 2127–2137 (2000).
[CrossRef] [PubMed]

Viellerobe, B.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Vinegoni, C.

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
[CrossRef] [PubMed]

Wallrabe, H.

H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006).
[CrossRef] [PubMed]

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

Warren, S.

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Webb, K. J.

V. Gaind, S. Kularatne, P. S. Low, and K. J. Webb, “Deep-tissue imaging of intramolecular fluorescence resonance energy-transfer parameters,” Opt. Lett.35(9), 1314–1316 (2010).
[CrossRef] [PubMed]

V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009).
[CrossRef] [PubMed]

Weissleder, R.

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001).
[CrossRef] [PubMed]

Wells, D. J.

Wylezinska-Arridge, M.

Yamashita, S.

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

Yoo, K. M.

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett.64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Yoshizaki, H.

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

Zhuang, X.

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009).
[CrossRef] [PubMed]

Annu. Rev. Biochem. (2)

B. Huang, M. Bates, and X. Zhuang, “Super-resolution fluorescence microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009).
[CrossRef] [PubMed]

L. Stryer, “Fluorescence energy transfer as a spectroscopic ruler,” Annu. Rev. Biochem.47(1), 819–846 (1978).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biochim. Biophys. Acta (1)

A. Nezu, A. Tanimura, T. Morita, A. Shitara, and Y. Tojyo, “A novel fluorescent method employing the FRET-based biosensor “LIBRA” for the identification of ligands of the inositol 1,4,5-trisphosphate receptors,” Biochim. Biophys. Acta1760(8), 1274–1280 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

J. Chen, V. Venugopal, and X. Intes, “Monte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates,” Biomed. Opt. Express2(4), 871–886 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

Biophys. J. (4)

M. Mank, D. F. Reiff, N. Heim, M. W. Friedrich, A. Borst, and O. Griesbeck, “A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change,” Biophys. J.90(5), 1790–1796 (2006).
[CrossRef] [PubMed]

S. Padilla-Parra, N. Audugé, M. Coppey-Moisan, and M. Tramier, “Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells,” Biophys. J.95(6), 2976–2988 (2008).
[CrossRef] [PubMed]

P. J. Verveer, A. Squire, and P. I. Bastiaens, “Global analysis of fluorescence lifetime imaging microscopy data,” Biophys. J.78(4), 2127–2137 (2000).
[CrossRef] [PubMed]

M. Y. Berezin, K. Guo, W. Akers, R. E. Northdurft, J. P. Culver, B. Teng, O. Vasalatiy, K. Barbacow, A. Gandjbakhche, G. L. Griffiths, and S. Achilefu, “Near-infrared fluorescence lifetime pH-sensitive probes,” Biophys. J.100(8), 2063–2072 (2011).
[CrossRef] [PubMed]

Biotechnol. Lett. (1)

I. T. Li, E. Pham, and K. Truong, “Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics,” Biotechnol. Lett.28(24), 1971–1982 (2006).
[CrossRef] [PubMed]

ChemPhysChem (1)

S. Kumar, D. Alibhai, A. Margineanu, R. Laine, G. Kennedy, J. McGinty, S. Warren, D. Kelly, Y. Alexandrov, I. Munro, C. Talbot, D. W. Stuckey, C. Kimberly, B. Viellerobe, F. Lacombe, E. W.-F. Lam, H. Taylor, M. J. Dallman, G. Stamp, E. J. Murray, F. Stuhmeier, A. Sardini, M. Katan, D. S. Elson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ,” ChemPhysChem12(3), 609–626 (2011).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

H. Wallrabe and A. Periasamy, “Imaging protein molecules using FRET and FLIM microscopy,” Curr. Opin. Biotechnol.16(1), 19–27 (2005).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

E. A. Jares-Erijman and T. M. Jovin, “Imaging molecular interactions in living cells by FRET microscopy,” Curr. Opin. Chem. Biol.10(5), 409–416 (2006).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

J. Biol. Chem. (1)

N. Gaborit, C. Larbouret, J. Vallaghe, F. Peyrusson, C. Bascoul-Mollevi, E. Crapez, D. Azria, T. Chardès, M.-A. Poul, G. Mathis, H. Bazin, and A. Pèlegrin, “Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies,” J. Biol. Chem.286(13), 11337–11345 (2011).
[CrossRef] [PubMed]

J. Clin. Invest. (1)

B. Breart, F. Lemaître, S. Celli, and P. Bousso, “Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice,” J. Clin. Invest.118(4), 1390–1397 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

H. Ueyama, M. Takagi, and S. Takenaka, “A novel potassium sensing in aqueous media with a synthetic oligonucleotide derivative. Fluorescence resonance energy transfer associated with Guanine quartet-potassium ion complex formation,” J. Am. Chem. Soc.124(48), 14286–14287 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependent photon scatter for diffuse optical tomography,” J. Biomed. Opt.15(6), 065006 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

S. Bélanger, M. Abran, X. Intes, C. Casanova, and F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt.15(1), 016006 (2010).
[CrossRef] [PubMed]

J. Chen and X. Intes, “Mesh-based Monte Carlo method in time-domain widefield fluorescence molecular tomography,” J. Biomed. Opt.17(10), 106009 (2012).
[CrossRef]

J. R. Lakowicz and B. R. Masters, “Principles of fluorescence spectroscopy, third edition,” J. Biomed. Opt.13(2), 029901 (2008).
[CrossRef]

S. B. Raymond, D. A. Boas, B. J. Bacskai, and A. T. N. Kumar, “Lifetime-based tomographic multiplexing,” J. Biomed. Opt.15(4), 046011 (2010).
[CrossRef] [PubMed]

N. A. Rahim, S. Pelet, R. D. Kamm, and P. T. C. So, “Methodological considerations for global analysis of cellular FLIM/FRET measurements,” J. Biomed. Opt.17(2), 026013 (2012).
[CrossRef] [PubMed]

J. Cell Biol. (1)

A. K. Kenworthy and M. Edidin, “Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer,” J. Cell Biol.142(1), 69–84 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

V. Gaind, K. J. Webb, S. Kularatne, and C. A. Bouman, “Towards in vivo imaging of intramolecular fluorescence resonance energy transfer parameters,” J. Opt. Soc. Am. A26(8), 1805–1813 (2009).
[CrossRef] [PubMed]

Med. Phys. (1)

J. Chen and X. Intes, “Comparison of Monte Carlo methods for fluorescence molecular tomography-computational efficiency,” Med. Phys.38(10), 5788–5798 (2011).
[CrossRef] [PubMed]

Med. Res. Rev. (1)

H. Li and Z. M. Qian, “Transferrin/transferrin receptor-mediated drug delivery,” Med. Res. Rev.22(3), 225–250 (2002).
[CrossRef] [PubMed]

Microsc. Res. Tech. (1)

H. Wallrabe, Y. Chen, A. Periasamy, and M. Barroso, “Issues in confocal microscopy for quantitative FRET analysis,” Microsc. Res. Tech.69(3), 196–206 (2006).
[CrossRef] [PubMed]

Mol. Biol. Cell (1)

T. Nishioka, K. Aoki, K. Hikake, H. Yoshizaki, E. Kiyokawa, and M. Matsuda, “Rapid turnover rate of phosphoinositides at the front of migrating MDCK cells,” Mol. Biol. Cell19(10), 4213–4223 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005).
[CrossRef] [PubMed]

Nat. Methods (1)

C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods5(1), 45–47 (2008).
[CrossRef] [PubMed]

Nature (2)

N. Mochizuki, S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda, “Spatio-temporal images of growth-factor-induced activation of Ras and Rap1,” Nature411(6841), 1065–1068 (2001).
[CrossRef] [PubMed]

A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, “Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin,” Nature388(6645), 882–887 (1997).
[CrossRef] [PubMed]

Neuron (1)

T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron27(3), 447–459 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

J. Chen, V. Venugopal, F. Lesage, and X. Intes, “Time-resolved diffuse optical tomography with patterned-light illumination and detection,” Opt. Lett.35(13), 2121–2123 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Med. Biol. (1)

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol.43(5), 1285–1302 (1998).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett.64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008).
[CrossRef] [PubMed]

Other (2)

C. Chang and M. Mycek, "Improving precision in time-gated FLIM for low-light live-cell imaging," in Molecular Imaging II, K. Licha and C. Lin, eds., Vol. 7370 of Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), paper 7370_09.

A. Periasamy, H. Wallrabe, Y. Chen, and M. Barroso, “Quantitation of protein–protein interactions: confocal FRET microscopy,” in Biophysical Tools for Biologists, Volume Two, Vol. 89 of Methods in Cell Biology (Academic, 2008), pp. 569–598.

Supplementary Material (1)

» Media 1: AVI (4636 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a, Schematic of the tomographic imaging platform. b, Excerpt from video showing imaging protocol for wide-field time-resolved tomography (Media 1) c, Hierarchical reconstruction scheme flowchart.

Fig. 2
Fig. 2

NIR FRET pair. a, Fluorescence spectra of the Alexa Fluor 700 (donor) and Alexa Fluor 750 (acceptor) dyes. b, Temporal measurements acquired upon direct imaging of multiple mixtures of acceptor and donor fluorophores in varying ratios. c, Fraction of FRETing donor molecules in multiple mixtures with varying Acceptor:Donor (A:D) ratios.

Fig. 3
Fig. 3

a, Design of murine phantom with four inclusions carrying mixtures with different acceptor to donor ratios (Red- 1:4, Green-1:2, Cyan-2:1 and Blue-4:1). The orange boundary indicates the area of full-field excitation. b, An example of the normalized temporal measurements acquired at detectors directly above the four inclusions when excited by a full-field excitation pattern. c, Histogram of the value of shorter lifetime (FRETing donor) component for all detectors above signal threshold for all excitation patterns.

Fig. 4
Fig. 4

a, 50% iso volume of total reconstructed fluorescence yield. b, Reconstructed quantum yield of the shorter component thresholded at 50% of maximum value at the slice at depth of 11 mm. c, Quantitative comparison of tomographic estimates of FRETing donor fraction from above reconstruction.

Fig. 5
Fig. 5

a, 3D rendering of the CT images of the mouse model showing the location of two capillary tubes carrying donor acceptor mixtures with A:D ratio of 1:4 (green) and 4:1 (blue). The black border represents the registered field of view on the optical imaging platform. b, An example of the temporal measurements acquired at detectors directly above the four inclusions when excited by a full-field excitation pattern. c, Histogram of the value of shorter lifetime (FRETing donor) component for all detectors above signal threshold for all excitation patterns.

Fig. 6
Fig. 6

a, 50% iso-volumes of total reconstructed donor quantum yield. b, The relative reconstructed quantum yield of the shorter component thresholded at 50% of maximum value overlaid on the corresponding slice from the CT volume. c, Quantitative comparison of tomographic estimates of FRETing donor fraction from above reconstruction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η ( r ) = μ a f x ( r ) ϕ μ a x ( r )
W f l u o ( t ) = 0 t d t ' W a ( t ' ) e ( t t ' ) / τ
Φ = M i m ( t ) M i x = α U i x [ d 3 r W i F R E T ( t ) η F R E T + d 3 r W i n o n F R E T ( t ) η n o n F R E T ]
[ Φ 1 Φ K ] = [ β 1 W 1 , 1 F R E T β 1 W 1 , J F R E T β 1 W 1 , 1 , n o n F R E T β 1 W 1 , J n o n F R E T β K W K , 1 F R E T β K W K , J F R E T β K W K , 1 n o n F R E T β K W K , J n o n F R E T ] [ η 1 F R E T η J F R E T η 1 n o n F R E T η J n o n F R E T ]
Γ e m ( t ) = I R F ( t ) ( N + A F R E T e t / τ F R E T + A n o n F R E T e t / τ n o n F R E T )

Metrics