Abstract

This paper presents optical characterization of a first-generation SiO2 optrode array as a set of penetrating waveguides for both optogenetic and infrared (IR) neural stimulation. Fused silica and quartz discs of 3-mm thickness and 50-mm diameter were micromachined to yield 10 × 10 arrays of up to 2-mm long optrodes at a 400-μm pitch; array size, length and spacing may be varied along with the width and tip angle. Light delivery and loss mechanisms through these glass optrodes were characterized. Light in-coupling techniques include using optical fibers and collimated beams. Losses involve Fresnel reflection, coupling, scattering and total internal reflection in the tips. Transmission efficiency was constant in the visible and near-IR range, with the highest value measured as 71% using a 50-μm multi-mode in-coupling fiber butt-coupled to the backplane of the device. Transmittance and output beam profiles of optrodes with different geometries was investigated. Length and tip angle do not affect the amount of output power, but optrode width and tip angle influence the beam size and divergence independently. Finally, array insertion in tissue was performed to demonstrate its robustness for optical access in deep tissue.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Deisseroth, “Optogenetics,” Nat. Methods8, 26–29 (2011).
    [CrossRef]
  2. G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
    [CrossRef] [PubMed]
  3. F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
    [CrossRef] [PubMed]
  4. F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
    [CrossRef] [PubMed]
  5. J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009).
    [CrossRef] [PubMed]
  6. E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
    [CrossRef] [PubMed]
  7. X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
    [CrossRef] [PubMed]
  8. T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006).
    [CrossRef]
  9. G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
    [CrossRef] [PubMed]
  10. J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
    [CrossRef] [PubMed]
  11. R. Fork, “Laser stimulation of nerve cells in Aplysia,” Science171, 907–908 (1971).
    [CrossRef] [PubMed]
  12. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
    [CrossRef]
  13. A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
    [CrossRef]
  14. M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
    [CrossRef]
  15. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
    [CrossRef] [PubMed]
  16. N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
    [CrossRef]
  17. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
    [CrossRef] [PubMed]
  18. M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
    [CrossRef] [PubMed]
  19. J. Yao, B. Liu, and F. Qin, “Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies,” Biophys. J.96, 3611–3619 (2009).
    [CrossRef] [PubMed]
  20. J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits,” Curr. Opin. Neurobiol.22, 61–71 (2012).
    [CrossRef]
  21. A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
    [CrossRef] [PubMed]
  22. N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
    [CrossRef] [PubMed]
  23. H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
    [CrossRef] [PubMed]
  24. N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
    [CrossRef]
  25. O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
    [CrossRef] [PubMed]
  26. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577644 (2003).
    [CrossRef]
  27. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
    [CrossRef]
  28. L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci.34, 389–412 (2011).
    [CrossRef] [PubMed]
  29. A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
    [CrossRef] [PubMed]
  30. A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007).
    [CrossRef] [PubMed]
  31. F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
    [CrossRef] [PubMed]
  32. A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
    [CrossRef] [PubMed]
  33. A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
    [CrossRef] [PubMed]
  34. P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
    [CrossRef]
  35. J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
    [CrossRef]
  36. J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
    [CrossRef] [PubMed]
  37. S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
    [CrossRef] [PubMed]
  38. V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
    [CrossRef] [PubMed]
  39. E. Stark, T. Koos, and G. Buzski, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol.108, 349–363 (2012).
    [CrossRef] [PubMed]
  40. A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett.35, 4133–4135 (2010).
    [CrossRef] [PubMed]
  41. T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
    [CrossRef] [PubMed]
  42. T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
    [CrossRef]
  43. G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
    [CrossRef]
  44. R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010).
    [CrossRef]
  45. P. Srinivasan, J. Fred, R. Beyette, and I. Papautsky, “Micromachined arrays of cantilevered glass probes,” Appl. Opt.43, 776–782 (2004).
    [CrossRef] [PubMed]
  46. M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).
  47. Cargille Labs, “Cargille Laboratories refractive index fluid typical characteristics sheet”.
  48. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE Press, 2002).
  49. D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).
  50. H. Bennett, “Scattering characteristics of optical materials,” Opt. Eng.17, 480–488 (1978).
  51. N. Farah, I. Reutsky, and S. Shoham, “Patterned optical activation of retinal ganglion cells,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007 (IEEE, 2007), pp. 6368–6370.
    [CrossRef]
  52. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
    [CrossRef]
  53. V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
    [CrossRef]

2012 (8)

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits,” Curr. Opin. Neurobiol.22, 61–71 (2012).
[CrossRef]

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

E. Stark, T. Koos, and G. Buzski, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol.108, 349–363 (2012).
[CrossRef] [PubMed]

2011 (7)

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci.34, 389–412 (2011).
[CrossRef] [PubMed]

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
[CrossRef] [PubMed]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

K. Deisseroth, “Optogenetics,” Nat. Methods8, 26–29 (2011).
[CrossRef]

2010 (8)

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett.35, 4133–4135 (2010).
[CrossRef] [PubMed]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010).
[CrossRef]

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

2009 (4)

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

J. Yao, B. Liu, and F. Qin, “Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies,” Biophys. J.96, 3611–3619 (2009).
[CrossRef] [PubMed]

J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009).
[CrossRef] [PubMed]

2008 (3)

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

2007 (7)

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007).
[CrossRef] [PubMed]

2006 (1)

T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006).
[CrossRef]

2005 (5)

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
[CrossRef] [PubMed]

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577644 (2003).
[CrossRef]

1978 (1)

H. Bennett, “Scattering characteristics of optical materials,” Opt. Eng.17, 480–488 (1978).

1971 (1)

R. Fork, “Laser stimulation of nerve cells in Aplysia,” Science171, 907–908 (1971).
[CrossRef] [PubMed]

Abaya, T. V. F.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

Adamantidis, A. R.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007).
[CrossRef] [PubMed]

Adeishvili, N.

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Airan, R. D.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

Albea, J.

Andalman, A. S.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Anikeeva, P.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Araki, R.

T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006).
[CrossRef]

Aravanis, A. M.

A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007).
[CrossRef] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Bakkum, D. J.

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

Bamberg, E.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
[CrossRef] [PubMed]

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Barbic, M.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Bass, M.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Bendett, M.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Bennett, H.

H. Bennett, “Scattering characteristics of optical materials,” Opt. Eng.17, 480–488 (1978).

Bernstein, J. G.

J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits,” Curr. Opin. Neurobiol.22, 61–71 (2012).
[CrossRef]

Berthold, P.

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Beyette, R.

Beyrire, F.

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

Bezanilla, F.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Bhandari, R.

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010).
[CrossRef]

Bidaye, S. S.

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

Blair, S.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

Blair, S. M.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Borton, D. A.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Boyden, E. S.

J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits,” Curr. Opin. Neurobiol.22, 61–71 (2012).
[CrossRef]

A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett.35, 4133–4135 (2010).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
[CrossRef] [PubMed]

Brauner, M.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

Burnett, A.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Burrone, J.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

Burwell, R. D.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Buzski, G.

E. Stark, T. Koos, and G. Buzski, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol.108, 349–363 (2012).
[CrossRef] [PubMed]

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Cayce, J. M.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Charpak, S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

Chiel, H.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Chiel, H. J.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Chuang, A.-Y.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Clark, G. A.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

Connors, B. W.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Davidson, T.

O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
[CrossRef] [PubMed]

Dawson, M. D.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

de Lecea, K. D. L.

A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007).
[CrossRef] [PubMed]

De Lecea, L.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

DeCusatis, C.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Degenaar, P.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Deisseroth, K.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
[CrossRef] [PubMed]

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci.34, 389–412 (2011).
[CrossRef] [PubMed]

K. Deisseroth, “Optogenetics,” Nat. Methods8, 26–29 (2011).
[CrossRef]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
[CrossRef] [PubMed]

DeSars, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

Diao, F.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Dickson, B. J.

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

Diester, I.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

DiGregorio, D. A.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

Diwekar, M.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

Doughman, Y.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Drakakis, E. M.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Duke, A. R.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Durand, R.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Emiliani, V.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

Enoch, J.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Farah, N.

N. Farah, I. Reutsky, and S. Shoham, “Patterned optical activation of retinal ganglion cells,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007 (IEEE, 2007), pp. 6368–6370.
[CrossRef]

Fenno, L.

O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
[CrossRef] [PubMed]

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci.34, 389–412 (2011).
[CrossRef] [PubMed]

Fonstad, C. G.

Fork, R.

R. Fork, “Laser stimulation of nerve cells in Aplysia,” Science171, 907–908 (1971).
[CrossRef] [PubMed]

Frank, L. M.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Fred, J.

Freeze, B. S.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

French, P. M. W.

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Fried, N.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Friedman, R. M.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Fujioka, H.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Garrity, P. A.

J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits,” Curr. Opin. Neurobiol.22, 61–71 (2012).
[CrossRef]

Gong, Z.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Goshen, I.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Gottschalk, A.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

Gradinaru, V.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Grosenick, L.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Grossman, N.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Grubb, M. S.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

Gu, E.

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Gu, S.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Gunaydin, L. A.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Gutierrez, D. V.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Han, J.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Hanson, M. G.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Hegemann, P.

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Herlitze, S.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Homma, K.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Huhn, W.

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Ishizuka, T.

T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006).
[CrossRef]

Izzo, A.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Jansen, E.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Jansen, E. D.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

Jenkins, M. W.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Kakuda, M.

T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006).
[CrossRef]

Kanzaki, R.

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

Kao, C.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

Kateriya, S.

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Kay, K.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

Keller, M. D.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Kennedy, G. T.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Kim, J.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

Kim, J. A.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Konrad, P.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

Koos, T.

E. Stark, T. Koos, and G. Buzski, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol.108, 349–363 (2012).
[CrossRef] [PubMed]

Kravitz, A. V.

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Kreitzer, A. C.

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Labs, Cargille

Cargille Labs, “Cargille Laboratories refractive index fluid typical characteristics sheet”.

Lagoda, G.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Laiwalla, F.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Landmesser, L. T.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Ledbetter, N. M.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Li, G.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Li, X.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Liewald, J. F.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

Lin, J. Y.

J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009).
[CrossRef] [PubMed]

Lin, M. Z.

J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009).
[CrossRef] [PubMed]

Liu, B.

J. Yao, B. Liu, and F. Qin, “Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies,” Biophys. J.96, 3611–3619 (2009).
[CrossRef] [PubMed]

Liu, T.

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

Losonczy, A.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Lutz, C.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

Magee, J. C.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

Mahajan, V.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Mahavaden-Jansen, A.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Mariappan, K.

Mark, M. D.

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Masser, C.

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

Mattis, J.

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

McGovern, B.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

Meltzer, L. A.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

Milner, T.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

Mogri, M.

O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Mogri, M. Z.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

Mynbaev, D.

D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).

Nagel, G.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
[CrossRef] [PubMed]

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Negi, S.

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010).
[CrossRef]

Neil, M. A. A.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Nikolic, K.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Nurmikko, A. V.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Ollig, D.

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Otis, T. S.

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

Ozden, I.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Palmini, R. B.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

Papautsky, I.

Parker, P. R. L.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Peabody, N. C.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Poher, V.

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Pohl, J. B.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Prigge, M.

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

Qin, F.

J. Yao, B. Liu, and F. Qin, “Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies,” Biophys. J.96, 3611–3619 (2009).
[CrossRef] [PubMed]

Rais-Bahrami, S.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Ralph, H.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Reutsky, I.

N. Farah, I. Reutsky, and S. Shoham, “Patterned optical activation of retinal ganglion cells,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007 (IEEE, 2007), pp. 6368–6370.
[CrossRef]

Richter, C.-P.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Rieth, L.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010).
[CrossRef]

Rieth, L. W.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Roe, A. W.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Rollins, A. M.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Royer, S.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Sakai, H.

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

Sakurai, T.

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

Sandstrom, D. J.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Scheiner, L.

D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).

Schister, S. L.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Schneider, M. B.

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

Shapiro, M. G.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Shoham, S.

N. Farah, I. Reutsky, and S. Shoham, “Patterned optical activation of retinal ganglion cells,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007 (IEEE, 2007), pp. 6368–6370.
[CrossRef]

Solzbacher, F.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010).
[CrossRef]

Song, Y.-K.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Srinivasan, P.

Stark, E.

E. Stark, T. Koos, and G. Buzski, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol.108, 349–363 (2012).
[CrossRef] [PubMed]

Steinbach, P.

J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009).
[CrossRef] [PubMed]

Stryland, E.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Su, L.-M.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Suzurikawa, J.

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

Szellas, T.

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Takahashi, H.

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

Tathireddy, P.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Characterization of a 3D optrode array for infrared neural stimulation,” Biomed. Opt. Express3, 2200–2219 (2012).
[CrossRef] [PubMed]

Tathireddy, P. R.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Thompson, K. R.

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Thwin, M. T.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Tsien, R. Y.

J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009).
[CrossRef] [PubMed]

Tsunoda, S. P.

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

Tuchin, V.

V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE Press, 2002).

Urabe, H.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

van Wagenen, R.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577644 (2003).
[CrossRef]

Villarreal, S.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577644 (2003).
[CrossRef]

von Philipsborn, A. C.

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

Vreede, A. P.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Wagenen, R. V.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Wagner, F.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Walsh, J.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Wang, H.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Wang, J.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Wang, L.-P.

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

Warden, M.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Warren, D. J.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Watanabe, M.

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Watzke, N.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

Webb, J.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Wells, J.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

Wells, J. D.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

White, B. H.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Witten, I.

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Wood, P. G.

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

Yao, J.

J. Yao, B. Liu, and F. Qin, “Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies,” Biophys. J.96, 3611–3619 (2009).
[CrossRef] [PubMed]

Yawo, H.

T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006).
[CrossRef]

Yizhar, O.

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci.34, 389–412 (2011).
[CrossRef] [PubMed]

O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
[CrossRef] [PubMed]

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Yu, J. Y.

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

Zelensky, P. K.

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

Zemelman, B. V.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Zhang, F.

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007).
[CrossRef] [PubMed]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
[CrossRef] [PubMed]

Zhang, H. X.

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Zhang, J.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Zorzos, A. N.

Annu. Rev. Neurosci. (1)

L. Fenno, O. Yizhar, and K. Deisseroth, “The development and application of optogenetics,” Annu. Rev. Neurosci.34, 389–412 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (3)

J. Y. Lin, M. Z. Lin, P. Steinbach, and R. Y. Tsien, “Characterization of engineered channelrhodopsin variants with improved properties and kinetics,” Biophys. J.96, 1803–1814 (2009).
[CrossRef] [PubMed]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Yao, B. Liu, and F. Qin, “Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies,” Biophys. J.96, 3611–3619 (2009).
[CrossRef] [PubMed]

BioSystems (1)

H. Takahashi, T. Sakurai, H. Sakai, D. J. Bakkum, J. Suzurikawa, and R. Kanzaki, “Light-addressed single-neuron stimulation in dissociated neuronal cultures with sparse expression of ChR2.” BioSystems107, 106–112 (2011).
[CrossRef] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev.103, 577644 (2003).
[CrossRef]

Curr. Biol. (1)

G. Nagel, M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, “Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses,” Curr. Biol.15, 2279–2284 (2005).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (2)

J. G. Bernstein, P. A. Garrity, and E. S. Boyden, “Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits,” Curr. Opin. Neurobiol.22, 61–71 (2012).
[CrossRef]

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

Eur. J. Neurosci. (1)

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

IEEE Trans. Bio-Med. Eng. (1)

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE Trans. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

J. Biomed. Opt. (1)

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Neural Eng. (4)

N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, “Multi-site optical excitation using ChR2 and micro-LED array,” J. Neural Eng.7, 016004 (2010).
[CrossRef]

A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, and K. Deisseroth, “An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology,” J. Neural Eng.4, S143 (2007).
[CrossRef] [PubMed]

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

E. Stark, T. Koos, and G. Buzski, “Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals,” J. Neurophysiol.108, 349–363 (2012).
[CrossRef] [PubMed]

J. Neurosci. (2)

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

N. C. Peabody, J. B. Pohl, F. Diao, A. P. Vreede, D. J. Sandstrom, H. Wang, P. K. Zelensky, and B. H. White, “Characterization of the decision network for wing expansion in drosophila using targeted expression of the TRPM8 channel,” J. Neurosci.29, 3343–3353 (2009).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys. (1)

V. Poher, N. Grossman, G. T. Kennedy, K. Nikolic, H. X. Zhang, Z. Gong, E. M. Drakakis, E. Gu, M. D. Dawson, P. M. W. French, P. Degenaar, and M. A. A. Neil, “Micro-LED arrays: a tool for two-dimensional neuron stimulation,” J. Phys. D: Appl. Phys.41, 094014 (2008).
[CrossRef]

Nat. Commun. (1)

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Nat. Methods (2)

K. Deisseroth, “Optogenetics,” Nat. Methods8, 26–29 (2011).
[CrossRef]

C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods5, 821–827 (2008).
[CrossRef]

Nat. Neurosci. (3)

F. Zhang, M. Prigge, F. Beyrire, S. P. Tsunoda, J. Mattis, O. Yizhar, P. Hegemann, and K. Deisseroth, “Red-shifted optogenetic excitation: a tool for fast neural control derived from volvox carteri,” Nat. Neurosci.11, 631–633 (2008).
[CrossRef] [PubMed]

E. S. Boyden, F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, “Millisecond-timescale, genetically targeted optical control of neural activity,” Nat. Neurosci.8, 1263–1268 (2005).
[CrossRef] [PubMed]

P. Anikeeva, A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, “Optetrode: a multichannel readout for optogenetic control in freely moving mice,” Nat. Neurosci.15, 163–170 (2012).
[CrossRef]

Nat. Photonics. (1)

M. W. Jenkins, A. R. Duke, S. Gu, Y. Doughman, H. J. Chiel, H. Fujioka, M. Watanabe, E. D. Jansen, and A. M. Rollins, “Optical pacing of the embryonic heart,” Nat. Photonics.4, 623–626 (2010).
[CrossRef]

Nat. Protoc. (1)

F. Zhang, V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. De Lecea, and K. Deisseroth, “Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.” Nat. Protoc.5, 439–456 (2010).
[CrossRef] [PubMed]

Nature (3)

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

A. R. Adamantidis, F. Zhang, A. M. Aravanis, and K. D. L. de Lecea, “Neural substrates of awakening probed with optogenetic control of hypocretin neurons,” Nature450, 420–424 (2007).
[CrossRef] [PubMed]

F. Zhang, L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, “Multimodal fast optical interrogation of neural circuitry,” Nature446, 633–639 (2007).
[CrossRef] [PubMed]

Neuroimage (1)

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Neuron (2)

A. C. von Philipsborn, T. Liu, J. Y. Yu, C. Masser, S. S. Bidaye, and B. J. Dickson, “Neuronal control of drosophila courtship song,” Neuron69, 509–522 (2011).
[CrossRef] [PubMed]

O. Yizhar, L. Fenno, T. Davidson, M. Mogri, and K. Deisseroth, “Optogenetics in neural systems,” Neuron71, 9–34 (2011).
[CrossRef] [PubMed]

Neurosci. Res. (1)

T. Ishizuka, M. Kakuda, R. Araki, and H. Yawo, “Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels,” Neurosci. Res.54, 85–94 (2006).
[CrossRef]

Opt. Eng. (1)

H. Bennett, “Scattering characteristics of optical materials,” Opt. Eng.17, 480–488 (1978).

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U. S. A. (1)

G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proc. Natl. Acad. Sci. U. S. A.100, 13940–13945 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Li, D. V. Gutierrez, M. G. Hanson, J. Han, M. D. Mark, H. Chiel, P. Hegemann, L. T. Landmesser, and S. Herlitze, “Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin,” Proc. Natl. Acad. Sci. U.S.A.102, 17816–17821 (2005).
[CrossRef] [PubMed]

Proc. SPIE (2)

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the utah slant optrode array for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular utah slanted optrode arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010).
[CrossRef]

Science (1)

R. Fork, “Laser stimulation of nerve cells in Aplysia,” Science171, 907–908 (1971).
[CrossRef] [PubMed]

Sens. Actuators, A (1)

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators, A162, 130–136 (2010).
[CrossRef]

Other (5)

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Cargille Labs, “Cargille Laboratories refractive index fluid typical characteristics sheet”.

V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE Press, 2002).

D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).

N. Farah, I. Reutsky, and S. Shoham, “Patterned optical activation of retinal ganglion cells,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007 (IEEE, 2007), pp. 6368–6370.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Tissue attenuation spectrum. Light transport of wavelengths in the visible range is more strongly affected by scattering, while absorption is dominant in the infrared. Penetration depth (i.e., depth where intensity falls to 1/e of surface value) is limited to about 1 mm.

Fig. 2
Fig. 2

SEM image of a 3D optrode array made from glass. (a) 10×10 rows of 1.5-mm long and 150-μm wide optrodes. (b) Profile of optrode geometry. (c) Definition of optrode sections along path of light propagation: 1-mm backplane, base extending 100 μm into straight-edge shank and 120-μm long linearly tapered tip.

Fig. 3
Fig. 3

Array after bevel dicing (a) to form pyramidal tips (b).

Fig. 4
Fig. 4

Shank formation. Array after column dicing (a) has optrodes with pyramidal tips atop rectangular shanks (b). Array after etching (c) has thinner optrodes with the same shape as before.

Fig. 5
Fig. 5

Side-by-side comparison of same glass surface after dicing and HF wet etching (a), and subsequently after annealing (b) to reduce surface roughness. RMS surface roughness after annealing is measured as 22 nm by AFM.

Fig. 6
Fig. 6

Loss mechanisms within the glass optrode include Fresnel reflectance (Ri/o), coupling, backreflection and scattering.

Fig. 7
Fig. 7

Experimental Setup. (a) Determining output power and beam profile from optrode tips using in-coupling fibers. (b) Determining output power from optrode shanks and tips using in-coupling fibers to estimate shank losses. (c) Measuring transmission through optrode tips and array backplane using a collimated beam.

Fig. 8
Fig. 8

Transmission of a broadband light source and several discrete wavelengths through the optrodes (150-μm wide, 1.5-mm long shanks and 45° tip taper). In-coupling fibers of different core sizes with 0.22 NA were used. Optrode output from only the tips (a) and from both shanks and tips (b) was measured relative to power from fiber.

Fig. 9
Fig. 9

Transmission of a broadband light source through optrodes (150-μm wide, 1.5-mm long shanks and 45° tip taper). A 4-mm wide collimated beam was used as input and restricted with apertures of different diameters. Light from optrode tips (a) and through backplane (b) were measured relative to the beam power through the aperture.

Fig. 10
Fig. 10

Transmission of a broadband light source and several discrete wavelengths through the optrodes of varying length L, tip taper angle θ and width W. 50-μm core in-coupling fiber with 0.22 NA was used. Output from optrode tips were measured relative to power from fiber.

Fig. 11
Fig. 11

Optrode tips with 45° (a) and 30° (b) taper angle with respect to the the progation direction (i.e., vertical axis). Shank width is 150 μm.

Fig. 12
Fig. 12

Beam profile from 150-μm wide optrode with 45° tip taper angle using a 105-μm in-coupling fiber. Power is relative to peak.

Fig. 13
Fig. 13

Changes in beam width with propagation distance from 150-μm wide optrodes with 45° tapered tips; λ =1550 nm was coupled to a 105-μm in-coupling fiber of 0.22 NA.

Fig. 14
Fig. 14

A pneumatic wand inserter was used to fully implant the optrode arrays into 2% agarose (a), cat brain (b) and cat sciatic nerve (c). Arrays were intially rested on top of the tissue with the tips facing down; optrodes smoothly penetrated tissue. Optrodes are 150-μm wide and 1.5-mm long with 45° tips

Tables (4)

Tables Icon

Table 1 Refractive Indices at Visible and Near-IR Wavelengths.

Tables Icon

Table 2 Nominal Reflectance at Interfaces

Tables Icon

Table 3 Output beam width (2W0) in μm at 13.5 % of peak power for different optrode geometries (tip taper angle of 45° or 30° and shank width of 95 μm or 150 μm) at two wavelengths (IR and visible). In-coupling fibers of various core diameters (df) were used.

Tables Icon

Table 4 Output beam far-field full angle divergence (ϕ) in ° and Rayleigh range (zR) in μm for different optrode geometries (tip taper angle of 45° or 30° and shank width of 95 μm or 150 μm) at two wavelengths (IR and visible). In-coupling fibers of various core diameters (df) were used.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P in × ( 1 R i ) = P in + P back + P base + P out + P ref + P scat .
R = ( n 1 n 2 n 1 + n 2 ) 2
R eff = 1 ( 1 R 1 ) ( 1 R 2 ) = R 1 + R 2 R 1 R 2
η A = A O A F
η NA = ( NA O NA F ) 2 ,
TIS = R { 1 exp [ ( 4 π σ cos ( θ i ) λ ) 2 ] } ,
N R = L t cot ( θ m ) ,

Metrics