Abstract

An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
    [CrossRef] [PubMed]
  3. D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express17(2), 784–796 (2009).
    [CrossRef] [PubMed]
  4. A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Pract. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
    [CrossRef] [PubMed]
  5. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express14(2), 736–748 (2006).
    [CrossRef] [PubMed]
  6. M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express16(16), 12313–12333 (2008).
    [CrossRef] [PubMed]
  7. M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009).
    [CrossRef] [PubMed]
  8. Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express1(3), 798–811 (2010).
    [CrossRef] [PubMed]
  9. T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009).
    [CrossRef] [PubMed]
  10. G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
    [CrossRef] [PubMed]
  11. Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett.35(20), 3315–3317 (2010).
    [CrossRef] [PubMed]
  12. H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, H. Kadono, and M. Tanifuji, “Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo,” Biomed. Opt. Express2(11), 3129–3134 (2011).
    [CrossRef] [PubMed]
  13. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]
  14. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  15. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  16. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  17. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  18. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35(20), 3432–3434 (2010).
    [CrossRef] [PubMed]
  19. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  20. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
    [CrossRef] [PubMed]
  21. R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
    [CrossRef] [PubMed]
  22. D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett.33(12), 1318–1320 (2008).
    [CrossRef] [PubMed]
  23. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
    [CrossRef] [PubMed]
  24. J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
    [CrossRef] [PubMed]
  25. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
    [CrossRef] [PubMed]
  26. A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
    [CrossRef] [PubMed]
  27. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
    [CrossRef] [PubMed]
  28. Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt.49(25), 4756–4762 (2010).
    [CrossRef] [PubMed]
  29. S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010).
    [CrossRef] [PubMed]
  30. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
    [CrossRef] [PubMed]
  31. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011).
    [CrossRef] [PubMed]
  32. J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
    [CrossRef] [PubMed]
  33. M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).
  34. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
    [CrossRef] [PubMed]
  35. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011).
    [CrossRef] [PubMed]
  36. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, Amsterdam, 2006).
  37. V. D. Nguyen, B. I. Akca, K. Wörhoff, R. M. de Ridder, M. Pollnau, T. G. van Leeuwen, and J. Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett.36(7), 1293–1295 (2011).
    [CrossRef] [PubMed]
  38. B. I. Akca and L. Chang, “G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).
  39. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
    [CrossRef] [PubMed]
  40. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
    [CrossRef] [PubMed]
  41. “CUDA Toolkit 3.1 Downloads,” http://developer.nvidia.com/cuda-toolkit-31-downloads .
  42. N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol.7(7), 1071–1082 (1989).
    [CrossRef]
  43. American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).
  44. Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
    [CrossRef] [PubMed]

2012 (1)

B. I. Akca and L. Chang, “G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

2011 (7)

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
[CrossRef] [PubMed]

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011).
[CrossRef] [PubMed]

V. D. Nguyen, B. I. Akca, K. Wörhoff, R. M. de Ridder, M. Pollnau, T. G. van Leeuwen, and J. Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett.36(7), 1293–1295 (2011).
[CrossRef] [PubMed]

J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011).
[CrossRef] [PubMed]

H. Watanabe, U. M. Rajagopalan, Y. Nakamichi, K. M. Igarashi, H. Kadono, and M. Tanifuji, “Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo,” Biomed. Opt. Express2(11), 3129–3134 (2011).
[CrossRef] [PubMed]

2010 (12)

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010).
[CrossRef] [PubMed]

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, and H. Koseki, “Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units,” Appl. Opt.49(25), 4756–4762 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express1(3), 798–811 (2010).
[CrossRef] [PubMed]

Y. K. Tao, J. P. Ehlers, C. A. Toth, and J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett.35(20), 3315–3317 (2010).
[CrossRef] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35(20), 3432–3434 (2010).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

2009 (6)

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express17(2), 784–796 (2009).
[CrossRef] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
[CrossRef] [PubMed]

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009).
[CrossRef] [PubMed]

2008 (6)

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

D. Choi, H. Hiro-Oka, H. Furukawa, R. Yoshimura, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s,” Opt. Lett.33(12), 1318–1320 (2008).
[CrossRef] [PubMed]

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express16(16), 12313–12333 (2008).
[CrossRef] [PubMed]

2007 (1)

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

2004 (1)

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1989 (1)

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol.7(7), 1071–1082 (1989).
[CrossRef]

Adler, D. C.

Akca, B. I.

B. I. Akca and L. Chang, “G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

V. D. Nguyen, B. I. Akca, K. Wörhoff, R. M. de Ridder, M. Pollnau, T. G. van Leeuwen, and J. Kalkman, “Spectral domain optical coherence tomography imaging with an integrated optics spectrometer,” Opt. Lett.36(7), 1293–1295 (2011).
[CrossRef] [PubMed]

Amano, T.

An, L.

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
[CrossRef] [PubMed]

Aoshima, K.

Bajraszewski, T.

Barry, S.

Baumann, B.

Biedermann, B. R.

Birngruber, R.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Bloch, P.

Bonin, T.

Bouma, B. E.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Pract. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

Bradu, A.

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010).
[CrossRef] [PubMed]

Brenner, M.

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

Cable, A.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Cable, A. E.

Chang, L.

B. I. Akca and L. Chang, “G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Chen, Z.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

Choi, D.

de Ridder, R. M.

Desjardins, A. E.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Duker, J. S.

Efimov, I. R.

Ehlers, J. P.

Eigenwillig, C. M.

Evans, J. A.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Ferguson, R. D.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Franke, G.

Fujimoto, J. G.

Furukawa, H.

G Colt, H.

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

Gao, B. Z.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Gargesha, M.

Geerling, G.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Goodwin, R.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Gorczynska, I.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hagen-Eggert, M.

Hammer, D. X.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Hasegawa, H.

He, Y.

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hillmann, D.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

Hiro-Oka, H.

Hoerauf, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Hu, Z.

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, Q.

Huber, R.

Hüttmann, G.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35(20), 3432–3434 (2010).
[CrossRef] [PubMed]

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009).
[CrossRef] [PubMed]

Iftimia, N. V.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Igarashi, K. M.

Itagaki, T.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
[CrossRef] [PubMed]

Izatt, J. A.

Jang, I. K.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Pract. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

Jenkins, M. W.

Jiang, J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Just, T.

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009).
[CrossRef] [PubMed]

Kadono, H.

Kalkman, J.

Kang, J. U.

Kano, F.

Klein, T.

Koch, P.

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett.35(20), 3432–3434 (2010).
[CrossRef] [PubMed]

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

Koseki, H.

Kowalczyk, A.

Lankenau, E.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009).
[CrossRef] [PubMed]

Laqua, H.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Li, J.

Li, P.

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, A.

Liu, G.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

Low, A. F.

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Pract. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

Ma, Z.

Maeno, S.

Markwald, R. R.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Mashimo, H.

Müller, M.

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Nakamichi, Y.

Nakanishi, M.

Nguyen, V. D.

Nikolski, V. P.

Nishioka, N. S.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Oelckers, S.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Oh, W. Y.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Ohbayashi, K.

Olsson, N. A.

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol.7(7), 1071–1082 (1989).
[CrossRef]

Pau, H. W.

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009).
[CrossRef] [PubMed]

Podoleanu, A. G.

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010).
[CrossRef] [PubMed]

Pollnau, M.

Potsaid, B.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Probst, J.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rajagopalan, U. M.

Rollins, A. M.

Rothenberg, F.

Roy, D.

Rugonyi, S.

Sarunic, M. V.

Schmitt, J.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shannon, L.

Shen, T. T.

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
[CrossRef] [PubMed]

Shimizu, K.

Shishko, M.

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Shishkov, M.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

Spiteri, M. A.

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

Srinivasan, V. J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Su, J.

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

Suter, M. J.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sylwestrzak, M.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).

Szkulmowska, A.

Szkulmowski, M.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

Szlag, D.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).

Takeda, M.

Tanifuji, M.

Tao, Y. K.

Targowski, P.

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).

Tearney, G. J.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Pract. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

Thornburg, K.

Toth, C. A.

Troyer, A.

Tsai, T. H.

Ustun, T. E.

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Vakoc, B. J.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Van der Jeught, S.

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010).
[CrossRef] [PubMed]

van Leeuwen, T. G.

van Pittius, D. G.

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

Wang, R.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
[CrossRef] [PubMed]

Wang, R. K.

Z. Ma, A. Liu, X. Yin, A. Troyer, K. Thornburg, R. K. Wang, and S. Rugonyi, “Measurement of absolute blood flow velocity in outflow tract of HH18 chicken embryo based on 4D reconstruction using spectral domain optical coherence tomography,” Biomed. Opt. Express1(3), 798–811 (2010).
[CrossRef] [PubMed]

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

Watanabe, H.

Watanabe, M.

Watanabe, Y.

Whiteman, S.

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

Wieser, W.

Wilson, D. L.

Winter, C.

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

Wörhoff, K.

Xie, T.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

Xu, J.

Yang, Y.

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

Yin, X.

Yoshimura, R.

Yu, L.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

Yuan, X.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Yun, J. X.

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

Yun, S. H.

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

Zhang, J.

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

Zhang, K.

Zhou, C.

Appl. Opt. (1)

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

Appl. Opt. (3)

Arch. Ophthalmol. (1)

G. Geerling, M. Müller, C. Winter, H. Hoerauf, S. Oelckers, H. Laqua, and R. Birngruber, “Intraoperative 2-dimensional optical coherence tomography as a new tool for anterior segment surgery,” Arch. Ophthalmol.123(2), 253–257 (2005).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

Gastrointest. Endosc. (1)

B. J. Vakoc, M. Shishko, S. H. Yun, W. Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, and B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video),” Gastrointest. Endosc.65(6), 898–905 (2007).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

B. I. Akca and L. Chang, “G. Sengo, K. Wörhoff, R. M. de Ridder, and M. Pollnau, “Polarization-independent enhanced-resolution arrayed-waveguide grating used in spectral-domain optical low-coherence reflectometry,” IEEE Photon. Technol. Lett.24, 848–850 (2012).

IEEE Trans. Med. Imaging (1)

A. E. Desjardins, B. J. Vakoc, M. J. Suter, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Real-time FPGA processing for high-speed optical frequency domain imaging,” IEEE Trans. Med. Imaging28(9), 1468–1472 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
[CrossRef] [PubMed]

J. Probst, D. Hillmann, E. Lankenau, C. Winter, S. Oelckers, P. Koch, and G. Hüttmann, “Optical coherence tomography with online visualization of more than seven rendered volumes per second,” J. Biomed. Opt.15(2), 026014 (2010).
[CrossRef] [PubMed]

S. Van der Jeught, A. Bradu, and A. G. Podoleanu, “Real-time resampling in Fourier domain optical coherence tomography using a graphics processing unit,” J. Biomed. Opt.15(3), 030511 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

J. Su, J. Zhang, L. Yu, H. G Colt, M. Brenner, and Z. Chen, “Real-time swept source optical coherence tomography imaging of the human airway using a microelectromechanical system endoscope and digital signal processor,” J. Biomed. Opt.13(3), 030506 (2008).
[CrossRef] [PubMed]

R. Wang, J. X. Yun, X. Yuan, R. Goodwin, R. R. Markwald, and B. Z. Gao, “Megahertz streak-mode Fourier domain optical coherence tomography,” J. Biomed. Opt.16(6), 066016 (2011).
[CrossRef] [PubMed]

J. Laryngol. Otol. (1)

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Intra-operative application of optical coherence tomography with an operating microscope,” J. Laryngol. Otol.123(09), 1027–1030 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

N. A. Olsson, “Lightwave systems with optical amplifiers,” J. Lightwave Technol.7(7), 1071–1082 (1989).
[CrossRef]

Nat. Clin. Pract. Cardiovasc. Med. (1)

A. F. Low, G. J. Tearney, B. E. Bouma, and I. K. Jang, “Technology Insight: optical coherence tomography--current status and future development,” Nat. Clin. Pract. Cardiovasc. Med.3(3), 154–162, quiz 172 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

Opt. Express (10)

M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express14(2), 736–748 (2006).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

M. Gargesha, M. W. Jenkins, A. M. Rollins, and D. L. Wilson, “Denoising and 4D visualization of OCT images,” Opt. Express16(16), 12313–12333 (2008).
[CrossRef] [PubMed]

D. C. Adler, C. Zhou, T. H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express17(2), 784–796 (2009).
[CrossRef] [PubMed]

M. Gargesha, M. W. Jenkins, D. L. Wilson, and A. M. Rollins, “High temporal resolution OCT using image-based retrospective gating,” Opt. Express17(13), 10786–10799 (2009).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

Opt. Lett. (5)

Photonics Lett. Poland (1)

M. Sylwestrzak, M. Szkulmowski, D. Szlag, and P. Targowski, “Real-time imaging for spectral optical coherence tomography with massively parallel data processing,” Photonics Lett. Poland2, 137–139 (2010).

Phys. Med. Biol. (1)

Y. Yang, S. Whiteman, D. G. van Pittius, Y. He, R. K. Wang, and M. A. Spiteri, “Use of optical coherence tomography in delineating airways microstructure: comparison of OCT images to histopathological sections,” Phys. Med. Biol.49(7), 1247–1255 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum.79(11), 114301 (2008).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (3)

K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Elsevier, Amsterdam, 2006).

“CUDA Toolkit 3.1 Downloads,” http://developer.nvidia.com/cuda-toolkit-31-downloads .

American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1–200 (ANSI, 2000).

Supplementary Material (10)

» Media 1: AVI (2875 KB)     
» Media 2: AVI (3138 KB)     
» Media 3: AVI (3297 KB)     
» Media 4: AVI (3681 KB)     
» Media 5: AVI (3572 KB)     
» Media 6: AVI (3847 KB)     
» Media 7: AVI (3899 KB)     
» Media 8: AVI (3629 KB)     
» Media 9: AVI (2388 KB)     
» Media 10: AVI (4035 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Experimental configuration of our system. In inset (a), spectral shape of light at output of FIL is shown.

Fig. 2
Fig. 2

Schematic of arrayed waveguide grating (AWG)-type optical demultiplexer.

Fig. 3
Fig. 3

Dependence of optical frequency on channel number. (a) Optical demultiplexer (AWG) OD+, (b) Optical demultiplexer (AWG) OD−.

Fig. 4
Fig. 4

Superposed spectra observed at selected channels (1, 40, 80, 120, 160, 200, 240, 280, 320) of optical demultiplexer (AWG) OD+.

Fig. 5
Fig. 5

(a) Spectra observed at 160-channel of two optical demultiplexers; OD+ : red, OD−: blue. (b) Plot of spectrum observed at channel 160 of optical demultiplexer OD+ with linear vertical scale.

Fig. 6
Fig. 6

Dependence of attenuation on channel number are shown for (a) optical demultiplexer OD+ and (b) optical demultiplexer OD−. Dependence of non-adjacent background crosstalk on channel number are shown for (c) optical demultiplexer (AWG) OD+ and (d) optical demultiplexer (AWG) OD−.

Fig. 7
Fig. 7

Block diagram of A/D converter array and ultrafast data processing system.

Fig. 8
Fig. 8

Example of screen image of ultrafast real-time 4D OCT system.

Fig. 9
Fig. 9

Effect of normalization of interference signal. (a) Interference signal before normalization. (b) Interference signal after normalization. (c) Power spectrum before normalization. (d) Power spectrum after normalization.

Fig. 10
Fig. 10

(a) Experimental system for sensitivity measurement using semiconductor optical amplifier (SOA2). (b) Measurements of noise and signal (54 nW) as function of reference power to determine sensitivity.

Fig. 11
Fig. 11

(a) Point spread function as function of axial depth. (b) Axial resolution measurement; A (black): apodization with Hanning window, B (red): apodization with rectangular window.

Fig. 12
Fig. 12

Representative frames of videos of 4D real-time OCT display. Videos of miosis of human eye responding to on-off of pen light: (a) only 3D-rendered image (Media 1), (b) simultaneous display of three images (Media 2). (d) Video of deformation of rubber band (photo (c)) following repeated change in stretching length (Media 3). Videos of human thumb skin: (e) Virtual cutting at surface perpendicular to lateral axis (Media 4, perpendicular to fast axis; Media 5, perpendicular to slow axis), (f) virtual cutting at surface perpendicular to depth axis (Media 6), (g) horizontal rotation (Media 7), (h) vertical rotation (Media 8).

Fig. 13
Fig. 13

(a) Representative image of video showing a series of 3D images of porcine trachea as we move the cutting surface in transverse direction (Media 9). (b) Representative image of video showing a series of cross-sectional images in transverse direction (Media 10). M represents mucosa region; SM: submucosa region; C: cartilage; and PC: perichondrium.

Fig. 14
Fig. 14

(a) A rendered 3D image of the human middle finger recorded at a volume rate of 41 volumes/second. (b) A B-scan image selected from the 3D image.

Tables (2)

Tables Icon

Table 1 Volume rates (volumes/second) and voxel rates (MVoxels/second) of real-time processing. Voxel rates are in parentheses.

Tables Icon

Table 2 Volume rates (volumes/second) and the voxel rates (MVoxels/second) of recording. Voxel rates are in parentheses.

Metrics