Abstract

Noninvasive glucose monitoring will greatly improve diabetes management. We applied Wavelength-Modulated Differential Laser Photothermal Radiometry (WM-DPTR) to noninvasive glucose measurements in human skin in vitro in the mid-infrared range. Glucose measurements in human blood serum diffused into a human skin sample (1 mm thickness from abdomen) in the physiological range (21-400 mg/dl) demonstrated high sensitivity and accuracy to meet wide clinical detection requirements. It was found that the glucose sensitivity could be tuned by adjusting the intensity ratio and phase difference of the two laser beams in the WM-DPTR system. The measurement results demonstrated the feasibility of the development of WM-DPTR into a clinically viable noninvasive glucose biosensor.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
    [CrossRef] [PubMed]
  2. D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
    [CrossRef] [PubMed]
  3. American Diabetes Association, “2012 Consumer guide: 2012 blood glucose meters,” Diabetes Forecast Mag., January, 2012.
  4. American Diabetes Association, “2012 Consumer guide: 2012 continuous glucose monitors,” Diabetes Forecast Mag., January, 2012.
  5. R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5(1), 5–16 (2000).
    [CrossRef] [PubMed]
  6. G. L. Coté, “Noninvasive and minimally-invasive optical monitoring technologies,” J. Nutr.131(5), 1596S–1604S (2001).
    [PubMed]
  7. A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract.77(1), 16–40 (2007).
    [CrossRef] [PubMed]
  8. V. V. Tuchin, ed., Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Boca Raton, FL, 2008).
  9. C. E. Ferrante do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30(5), 541–549 (2008).
    [CrossRef] [PubMed]
  10. S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Anal. Chim. Acta750, 16–27 (2012).
    [CrossRef] [PubMed]
  11. N. A. Bazaev, Yu. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
    [CrossRef]
  12. C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter,” Appl. Opt.37(16), 3553–3557 (1998).
    [CrossRef] [PubMed]
  13. B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15(1), 017002 (2010).
    [CrossRef] [PubMed]
  14. I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
    [CrossRef] [PubMed]
  15. J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10(3), 031110 (2005).
    [CrossRef] [PubMed]
  16. R. Marbach, T. Koschinsky, F. A. Gries, and H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc.47(7), 875–881 (1993).
    [CrossRef]
  17. K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, “In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy,” Appl. Spectrosc.57(10), 1236–1244 (2003).
    [CrossRef] [PubMed]
  18. C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
    [CrossRef] [PubMed]
  19. I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
    [CrossRef] [PubMed]
  20. C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002).
    [CrossRef] [PubMed]
  21. P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
    [CrossRef] [PubMed]
  22. R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006).
    [CrossRef] [PubMed]
  23. W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasive contact lens glucose sensor,” Diabetes Technol. Ther.8(3), 312–317 (2006).
    [CrossRef] [PubMed]
  24. J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomed. Opt. Express3(4), 667–680 (2012).
    [CrossRef] [PubMed]
  25. G. Spanner and R. NieBner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes,” Fresenius J. Anal. Chem.354, 327–328 (1996).
  26. G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31(3), 284–290 (1993).
    [CrossRef] [PubMed]
  27. C. J. Pouchert, The Aldrich Library of Infrared Spectra (Aldrich Chemical Co., ed. 3, 1981).
  28. H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
    [PubMed]
  29. W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” J. Biomed. Opt.7(4), 613–617 (2002).
    [CrossRef] [PubMed]
  30. W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005).
    [CrossRef] [PubMed]
  31. X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
    [CrossRef]
  32. X. Guo, A. Mandelis, and B. Zinman, “Non-invasive glucose measurements using wavelength modulated differential photothermal radiometry (WM-DPTR),” Int. J. Thermophys., doi:.
    [CrossRef]
  33. A. Mandelis and X. Guo, “Method of performing wavelength modulated differential laser photothermal radiometry with high sensitivity,” U. S. patent application No. 20110118571 (Nov. 17, 2010).
  34. A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(4), 041917 (2011).
    [CrossRef] [PubMed]
  35. X. Guo, A. Mandelis, and B. Zinman, “Applications of ultrasensitive wavelength-modulated differential photothermal radiometry to noninvasive glucose detection in blood serum,” J. Biophotonics, http://onlinelibrary.wiley.com/doi/10.1002/jbio.201200103/abstract .
  36. K. J. Wientjes and A. J. Schoonen, “Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers,” Int. J. Artif. Organs24(12), 884–889 (2001).
    [PubMed]
  37. P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
    [CrossRef] [PubMed]
  38. I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
    [CrossRef] [PubMed]
  39. A. C. Guyton and J. E. Hall, Textbook of Medical Physiology (W.B. Saunders Co. Philadelphia, PA, 1996), pp 971–983.
  40. U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
    [CrossRef] [PubMed]
  41. A. M. Stoll, Heat Transfer in Biotechnology, Vol 4 of Advances in Heat Transfer, J. P. Hartnett and T. Irvin, eds. (New York, Academic, 1967), p 117.
  42. Pranalytica Inc, Daylight Solutions, personal communication (2012).

2012 (3)

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Anal. Chim. Acta750, 16–27 (2012).
[CrossRef] [PubMed]

N. A. Bazaev, Yu. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

J. Kottmann, J. M. Rey, J. Luginbühl, E. Reichmann, and M. W. Sigrist, “Glucose sensing in human epidermis using mid-infrared photoacoustic detection,” Biomed. Opt. Express3(4), 667–680 (2012).
[CrossRef] [PubMed]

2011 (4)

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(4), 041917 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

2010 (4)

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15(1), 017002 (2010).
[CrossRef] [PubMed]

I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
[CrossRef] [PubMed]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
[CrossRef]

2008 (1)

C. E. Ferrante do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30(5), 541–549 (2008).
[CrossRef] [PubMed]

2007 (1)

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract.77(1), 16–40 (2007).
[CrossRef] [PubMed]

2006 (2)

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006).
[CrossRef] [PubMed]

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasive contact lens glucose sensor,” Diabetes Technol. Ther.8(3), 312–317 (2006).
[CrossRef] [PubMed]

2005 (2)

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10(3), 031110 (2005).
[CrossRef] [PubMed]

W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005).
[CrossRef] [PubMed]

2003 (1)

2002 (2)

W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” J. Biomed. Opt.7(4), 613–617 (2002).
[CrossRef] [PubMed]

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002).
[CrossRef] [PubMed]

2001 (3)

G. L. Coté, “Noninvasive and minimally-invasive optical monitoring technologies,” J. Nutr.131(5), 1596S–1604S (2001).
[PubMed]

K. J. Wientjes and A. J. Schoonen, “Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers,” Int. J. Artif. Organs24(12), 884–889 (2001).
[PubMed]

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

2000 (2)

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5(1), 5–16 (2000).
[CrossRef] [PubMed]

P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
[CrossRef] [PubMed]

1999 (2)

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

1998 (1)

1996 (1)

G. Spanner and R. NieBner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes,” Fresenius J. Anal. Chem.354, 327–328 (1996).

1993 (2)

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31(3), 284–290 (1993).
[CrossRef] [PubMed]

R. Marbach, T. Koschinsky, F. A. Gries, and H. M. Heise, “Noninvasive blood glucose assay by near-infrared diffuse reflectance spectroscopy of the human inner lip,” Appl. Spectrosc.47(7), 875–881 (1993).
[CrossRef]

1992 (1)

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
[CrossRef] [PubMed]

Aharon, Y.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

Arnold, M.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

Ashton, H. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Bakris, G. L.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

Ballerstadt, R.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006).
[CrossRef] [PubMed]

Barman, I.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
[CrossRef] [PubMed]

Barnes, C. W.

P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
[CrossRef] [PubMed]

Bazaev, N. A.

N. A. Bazaev, Yu. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

Borchert, M.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10(3), 031110 (2005).
[CrossRef] [PubMed]

Braig, J. R.

P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
[CrossRef] [PubMed]

Bruns, D. E.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

Buchert, J. M.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002).
[CrossRef] [PubMed]

Chou, C.

Christison, G. B.

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31(3), 284–290 (1993).
[CrossRef] [PubMed]

Coté, G. L.

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15(1), 017002 (2010).
[CrossRef] [PubMed]

G. L. Coté, “Noninvasive and minimally-invasive optical monitoring technologies,” J. Nutr.131(5), 1596S–1604S (2001).
[PubMed]

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5(1), 5–16 (2000).
[CrossRef] [PubMed]

Dasari, R. R.

I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
[CrossRef] [PubMed]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Dingari, N. C.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Erickson, B. J.

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

Evans, C.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006).
[CrossRef] [PubMed]

Feld, M. S.

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
[CrossRef] [PubMed]

Feng, C. M.

Ferrante do Amaral, C. E.

C. E. Ferrante do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30(5), 541–549 (2008).
[CrossRef] [PubMed]

Fomichova, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Freeborn, S. S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Gabriely, I.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

Giese, K.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
[CrossRef] [PubMed]

Gowda, A.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006).
[CrossRef] [PubMed]

Gretz, N.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Gries, F. A.

Guo, X.

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(4), 041917 (2011).
[CrossRef] [PubMed]

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
[CrossRef]

X. Guo, A. Mandelis, and B. Zinman, “Non-invasive glucose measurements using wavelength modulated differential photothermal radiometry (WM-DPTR),” Int. J. Thermophys., doi:.
[CrossRef]

Han, C. Y.

Hannigan, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Heise, H. M.

Herrmann, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Hilgers, M. E.

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

Hoegh, T. B.

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

Horvath, A. R.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

Huang, Y. C.

Kaplan, J.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

Kirkman, M. S.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

Kölmel, K.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
[CrossRef] [PubMed]

Kong, C. R.

I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
[CrossRef] [PubMed]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Koschinsky, T.

Kottmann, J.

Kramer, C. E.

P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
[CrossRef] [PubMed]

Kuo, W. C.

Lambert, J. L.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10(3), 031110 (2005).
[CrossRef] [PubMed]

Landau, J. I.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002).
[CrossRef] [PubMed]

Lazzaro, D.

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasive contact lens glucose sensor,” Diabetes Technol. Ther.8(3), 312–317 (2006).
[CrossRef] [PubMed]

Lernmark, A.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

Lindberg, J.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Luginbühl, J.

MacKenzie, H. A.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31(3), 284–290 (1993).
[CrossRef] [PubMed]

Malchoff, C. D.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002).
[CrossRef] [PubMed]

Malik, B. H.

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15(1), 017002 (2010).
[CrossRef] [PubMed]

Mandelis, A.

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(4), 041917 (2011).
[CrossRef] [PubMed]

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
[CrossRef]

X. Guo, A. Mandelis, and B. Zinman, “Non-invasive glucose measurements using wavelength modulated differential photothermal radiometry (WM-DPTR),” Int. J. Thermophys., doi:.
[CrossRef]

Maran, A.

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract.77(1), 16–40 (2007).
[CrossRef] [PubMed]

Marbach, R.

March, W.

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasive contact lens glucose sensor,” Diabetes Technol. Ther.8(3), 312–317 (2006).
[CrossRef] [PubMed]

Martin, W. B.

W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005).
[CrossRef] [PubMed]

W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” J. Biomed. Opt.7(4), 613–617 (2002).
[CrossRef] [PubMed]

Maruo, K.

Masloboev, Yu. P.

N. A. Bazaev, Yu. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

Matvienko, A.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
[CrossRef]

McNichols, R.

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006).
[CrossRef] [PubMed]

McNichols, R. J.

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5(1), 5–16 (2000).
[CrossRef] [PubMed]

Metzger, B. E.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

Mevorach, M.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

Mirov, S.

W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005).
[CrossRef] [PubMed]

W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” J. Biomed. Opt.7(4), 613–617 (2002).
[CrossRef] [PubMed]

Nathan, D. M.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

Neudecker, S.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

NieBner, R.

G. Spanner and R. NieBner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes,” Fresenius J. Anal. Chem.354, 327–328 (1996).

Ozaki, Y.

Pacini, G.

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract.77(1), 16–40 (2007).
[CrossRef] [PubMed]

Peled, N.

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

Pelletier, C. C.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10(3), 031110 (2005).
[CrossRef] [PubMed]

Petrich, W.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Plamann, K.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
[CrossRef] [PubMed]

Pucci, A.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Racchini, J. R.

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

Rae, P.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Rastogi, S.

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasive contact lens glucose sensor,” Diabetes Technol. Ther.8(3), 312–317 (2006).
[CrossRef] [PubMed]

Reichmann, E.

Rey, J. M.

Sacks, D. B.

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

Schoonen, A. J.

K. J. Wientjes and A. J. Schoonen, “Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers,” Int. J. Artif. Organs24(12), 884–889 (2001).
[PubMed]

Selishchev, S. V.

N. A. Bazaev, Yu. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

Sennhenn, B.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
[CrossRef] [PubMed]

Shamoon, H.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

Shen, Y.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Shoukri, K.

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002).
[CrossRef] [PubMed]

Shyu, J. C.

Sigrist, M. W.

Singh, G. P.

I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
[CrossRef] [PubMed]

Sivagurunathan, K.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
[CrossRef]

Spanner, G.

G. Spanner and R. NieBner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes,” Fresenius J. Anal. Chem.354, 327–328 (1996).

Spiers, S.

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Sterling, B. B.

P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
[CrossRef] [PubMed]

Stout, P. J.

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

Tamura, M.

Tsurugi, M.

Tura, A.

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract.77(1), 16–40 (2007).
[CrossRef] [PubMed]

Vashist, S. K.

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Anal. Chim. Acta750, 16–27 (2012).
[CrossRef] [PubMed]

Venugopalan, R.

W. B. Martin, S. Mirov, and R. Venugopalan, “Middle infrared, quantum cascade laser optoelectronic absorption system for monitoring glucose in serum,” Appl. Spectrosc.59(7), 881–884 (2005).
[CrossRef] [PubMed]

W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” J. Biomed. Opt.7(4), 613–617 (2002).
[CrossRef] [PubMed]

Vrancic, C.

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Werner, U.

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
[CrossRef] [PubMed]

Wientjes, K. J.

K. J. Wientjes and A. J. Schoonen, “Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers,” Int. J. Artif. Organs24(12), 884–889 (2001).
[PubMed]

Wolf, B.

C. E. Ferrante do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30(5), 541–549 (2008).
[CrossRef] [PubMed]

Wozniak, R.

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

Zheng, P.

P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
[CrossRef] [PubMed]

Zinman, B.

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
[CrossRef]

X. Guo, A. Mandelis, and B. Zinman, “Non-invasive glucose measurements using wavelength modulated differential photothermal radiometry (WM-DPTR),” Int. J. Thermophys., doi:.
[CrossRef]

Anal. Chem. (2)

I. Barman, C. R. Kong, G. P. Singh, R. R. Dasari, and M. S. Feld, “Accurate spectroscopic calibration for noninvasive glucose monitoring by modeling the physiological glucose dynamics,” Anal. Chem.82(14), 6104–6114 (2010).
[CrossRef] [PubMed]

I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem.82(23), 9719–9726 (2010).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Anal. Chim. Acta750, 16–27 (2012).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

C. Vrančić, A. Fomichova, N. Gretz, C. Herrmann, S. Neudecker, A. Pucci, and W. Petrich, “Continuous glucose monitoring by means of mid-infrared transmission laser spectroscopy in vitro,” Analyst (Lond.)136(6), 1192–1198 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (3)

Biomed. Eng. (N.Y.) (1)

N. A. Bazaev, Yu. P. Masloboev, and S. V. Selishchev, “Optical methods for noninvasive blood glucose monitoring,” Biomed. Eng. (N.Y.)45(6), 229–233 (2012).
[CrossRef]

Biomed. Opt. Express (1)

Clin. Chem. (1)

H. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, “Advances in photoacoustic noninvasive glucose testing,” Clin. Chem.45(9), 1587–1595 (1999).
[PubMed]

Diabetes Care (4)

I. Gabriely, R. Wozniak, M. Mevorach, J. Kaplan, Y. Aharon, and H. Shamoon, “Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia,” Diabetes Care22(12), 2026–2032 (1999).
[CrossRef] [PubMed]

C. D. Malchoff, K. Shoukri, J. I. Landau, and J. M. Buchert, “A novel noninvasive blood glucose monitor,” Diabetes Care25(12), 2268–2275 (2002).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical Biochemistry, “Position statement executive summary: guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), 1419–1423 (2011).
[CrossRef] [PubMed]

D. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, D. M. Nathan, and National Academy of Clinical BiochemistryEvidence-Based Laboratory Medicine Committee of the American Association for Clinical Chemistry, “Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus,” Diabetes Care34(6), e61–e99 (2011).
[CrossRef] [PubMed]

Diabetes Res. Clin. Pract. (1)

A. Tura, A. Maran, and G. Pacini, “Non-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,” Diabetes Res. Clin. Pract.77(1), 16–40 (2007).
[CrossRef] [PubMed]

Diabetes Technol. Ther. (4)

P. Zheng, C. E. Kramer, C. W. Barnes, J. R. Braig, and B. B. Sterling, “Noninvasive glucose determination by oscillating thermal gradient spectrometry,” Diabetes Technol. Ther.2(1), 17–25 (2000).
[CrossRef] [PubMed]

R. Ballerstadt, C. Evans, A. Gowda, and R. McNichols, “In vivo performance evaluation of a transdermal near- infrared fluorescence resonance energy transfer affinity sensor for continuous glucose monitoring,” Diabetes Technol. Ther.8(3), 296–311 (2006).
[CrossRef] [PubMed]

W. March, D. Lazzaro, and S. Rastogi, “Fluorescent measurement in the non-invasive contact lens glucose sensor,” Diabetes Technol. Ther.8(3), 312–317 (2006).
[CrossRef] [PubMed]

P. J. Stout, N. Peled, B. J. Erickson, M. E. Hilgers, J. R. Racchini, and T. B. Hoegh, “Comparison of glucose levels in dermal interstitial fluid and finger capillary blood,” Diabetes Technol. Ther.3(1), 81–90 (2001).
[CrossRef] [PubMed]

Fresenius J. Anal. Chem. (1)

G. Spanner and R. NieBner, “New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes,” Fresenius J. Anal. Chem.354, 327–328 (1996).

Int. J. Artif. Organs (1)

K. J. Wientjes and A. J. Schoonen, “Determination of time delay between blood and interstitial adipose tissue glucose concentration change by microdialysis in healthy volunteers,” Int. J. Artif. Organs24(12), 884–889 (2001).
[PubMed]

Int. J. Thermophys. (1)

X. Guo, A. Mandelis, and B. Zinman, “Non-invasive glucose measurements using wavelength modulated differential photothermal radiometry (WM-DPTR),” Int. J. Thermophys., doi:.
[CrossRef]

J. Biomed. Opt. (4)

B. H. Malik and G. L. Coté, “Real-time, closed-loop dual-wavelength optical polarimetry for glucose monitoring,” J. Biomed. Opt.15(1), 017002 (2010).
[CrossRef] [PubMed]

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt.10(3), 031110 (2005).
[CrossRef] [PubMed]

R. J. McNichols and G. L. Coté, “Optical glucose sensing in biological fluids: an overview,” J. Biomed. Opt.5(1), 5–16 (2000).
[CrossRef] [PubMed]

W. B. Martin, S. Mirov, and R. Venugopalan, “Using two discrete frequencies within the middle infrared to quantitatively determine glucose in serum,” J. Biomed. Opt.7(4), 613–617 (2002).
[CrossRef] [PubMed]

J. Nutr. (1)

G. L. Coté, “Noninvasive and minimally-invasive optical monitoring technologies,” J. Nutr.131(5), 1596S–1604S (2001).
[PubMed]

J. Phys.: Confer. Ser. (1)

X. Guo, A. Mandelis, A. Matvienko, K. Sivagurunathan, and B. Zinman, “Wavelength-modulated differential laser photothermal radiometry for blood glucose measurements,” J. Phys.: Confer. Ser.214, 012025 (2010).
[CrossRef]

Med. Biol. Eng. Comput. (1)

G. B. Christison and H. A. MacKenzie, “Laser photoacoustic determination of physiological glucose concentrations in human whole blood,” Med. Biol. Eng. Comput.31(3), 284–290 (1993).
[CrossRef] [PubMed]

Med. Eng. Phys. (1)

C. E. Ferrante do Amaral and B. Wolf, “Current development in non-invasive glucose monitoring,” Med. Eng. Phys.30(5), 541–549 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

U. Werner, K. Giese, B. Sennhenn, K. Plamann, and K. Kölmel, “Measurement of the thermal diffusivity of human epidermis by studying thermal wave propagation,” Phys. Med. Biol.37(1), 21–35 (1992).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.84(4), 041917 (2011).
[CrossRef] [PubMed]

Other (9)

X. Guo, A. Mandelis, and B. Zinman, “Applications of ultrasensitive wavelength-modulated differential photothermal radiometry to noninvasive glucose detection in blood serum,” J. Biophotonics, http://onlinelibrary.wiley.com/doi/10.1002/jbio.201200103/abstract .

A. Mandelis and X. Guo, “Method of performing wavelength modulated differential laser photothermal radiometry with high sensitivity,” U. S. patent application No. 20110118571 (Nov. 17, 2010).

A. C. Guyton and J. E. Hall, Textbook of Medical Physiology (W.B. Saunders Co. Philadelphia, PA, 1996), pp 971–983.

A. M. Stoll, Heat Transfer in Biotechnology, Vol 4 of Advances in Heat Transfer, J. P. Hartnett and T. Irvin, eds. (New York, Academic, 1967), p 117.

Pranalytica Inc, Daylight Solutions, personal communication (2012).

C. J. Pouchert, The Aldrich Library of Infrared Spectra (Aldrich Chemical Co., ed. 3, 1981).

V. V. Tuchin, ed., Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, Boca Raton, FL, 2008).

American Diabetes Association, “2012 Consumer guide: 2012 blood glucose meters,” Diabetes Forecast Mag., January, 2012.

American Diabetes Association, “2012 Consumer guide: 2012 continuous glucose monitors,” Diabetes Forecast Mag., January, 2012.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

FTIR glucose absorption spectrum in the MIR range from aqueous glucose solutions with water absorption baseline subtracted.

Fig. 2
Fig. 2

WM-DPTR system setup for glucose measurements. Square-wave modulated radiation from laser A (9.5 μm) and laser B (10.4 μm) co-incident on the sample generate superposed IR emissions. The differential infrared photon flux is collected by the MCZT detector acting as a band pass filter (2-5 μm, dashed line) and sent to a lock-in amplifier. The function generator controls the phase shift between the two laser beams, and the variable circular neutral density (ND) filter controls the intensity ratio of the two lasers IA/IB.

Fig. 3
Fig. 3

Schematic diagram of sample holder

Fig. 4
Fig. 4

Modulation frequency dependence of thermal diffusion length in skin. The upper limit of thermal diffusion length is calculated from the thermal diffusivity of epidermis of 260 µm thickness while the lower limit is calculated from the thermal diffusivity of superficial layer of epidermis of 13 µm thickness.

Fig. 5
Fig. 5

Time scan of differential signals from 280 mg/dl solution with amplitude ratio R = 1.1, phase shift dP = 180.1° at 90 Hz. (a) Amplitude; (b) Phase.

Fig. 6
Fig. 6

Signal vs. amplitude ratio R with glucose concentration 25 mg/dl and 280 mg/dl and phase shift dP = 180.1°. (a) Amplitude; (b) Phase.

Fig. 7
Fig. 7

Signal vs. glucose concentration with different R-dP combinations at 90 Hz. The symbols are data points and the lines are a guide to the eye. Error bars were obtained from five measurements. (a) Amplitude; (b) Phase.

Fig. 8
Fig. 8

Signal vs. glucose concentration (22 mg/dl to 400 mg/dl) with different R-dP combinations at 90 Hz. The symbols are data points and the lines are a guide to the eye. Error bars were obtained from five measurements. (a) Amplitude; (b) Phase.

Fig. 9
Fig. 9

Signal vs. glucose concentration in low glucose concentration range (21 mg/dl to130 mg/dl) with different R-dP combinations at 90 Hz. The symbols are data points and the lines are a guide to the eye. Error bars were obtained from five measurements. (a) Amplitude; (b) Phase.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S j (t)=Δ Q j (t)=[ μ ¯ IR K( λ 1 , λ 2 )α 2k ] I 0j μ ej τ tj { 1 μ ¯ IR + μ ej [ W( t τ tj )+W( t τ IR )2 ] + 1 μ ¯ IR μ ej [ W( t τ tj )W( t τ IR ) ] + 2 μ ¯ IR { 2 t π τ tj τ IR τ tj [ 1W( t τ IR ) ] } }; j=A,B
S AB (t)={ Δ Q A (t);        0t τ 0 2   (laser A on; laser B off) Δ Q A (t)Δ Q A ( t τ 0 2 )+Δ Q B ( t τ 0 2 );   τ 0 2 t τ 0  (laser A off; laser B on)
A AB = Δ S IP 2 +Δ S Q 2 ,   P AB = tan 1 ( Δ S Q Δ S IP )
[ a 1 ( ω 0 ) b 1 ( ω 0 ) ]= ω 0 π 0 τ 0 S AB (t)[ cos( ω 0 t) sin( ω 0 t) ] dt
μ s = α πf

Metrics