Abstract

Detection of non-scattering domains (voids) is an area of active research in biomedical optics. To avoid complexities of image reconstruction algorithms and requirements of a priori knowledge of void locations inherent to diffuse optical tomography (DOT), it would be useful to establish specific experimental signatures of voids that would help identify and detect them by other means. To address this, we present a radiance-based spectro-angular mapping approach that identifies void locations in the angular domain and establishes their spectral features. Using water-filled capillaries in scattering Intralipid as a test platform, we demonstrate perturbations in the directional photon density distribution produced by individual voids.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996).
    [CrossRef] [PubMed]
  2. H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol.44(12), 2897–2906 (1999).
    [CrossRef] [PubMed]
  3. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A17(9), 1659–1670 (2000).
    [CrossRef] [PubMed]
  4. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A17(9), 1671–1681 (2000).
    [CrossRef] [PubMed]
  5. M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
    [CrossRef]
  6. J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7(13), 462–467 (2000).
    [CrossRef] [PubMed]
  7. N. Hyvönen, “Locating transparent regions in optical absorption and scattering tomography,” SIAM J. Appl. Math.67(4), 1101–1123 (2007).
    [CrossRef]
  8. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
    [CrossRef]
  9. S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011).
    [CrossRef] [PubMed]
  10. S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
    [CrossRef] [PubMed]
  11. S. C. Feng, F. A. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt.34(19), 3826–3837 (1995).
    [CrossRef] [PubMed]
  12. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. Paasschens, J. B. Melissen, and N. A. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt.36(1), 180–213 (1997).
    [CrossRef] [PubMed]
  13. S. R. Arridge, “Photon-measurement density functions. Part I: analytical forms,” Appl. Opt.34(31), 7395–7409 (1995).
    [CrossRef] [PubMed]
  14. A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
    [CrossRef] [PubMed]
  15. S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995).
    [CrossRef]

2012 (1)

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

2011 (1)

S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011).
[CrossRef] [PubMed]

2009 (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

2007 (1)

N. Hyvönen, “Locating transparent regions in optical absorption and scattering tomography,” SIAM J. Appl. Math.67(4), 1101–1123 (2007).
[CrossRef]

2000 (5)

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A17(9), 1659–1670 (2000).
[CrossRef] [PubMed]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A17(9), 1671–1681 (2000).
[CrossRef] [PubMed]

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7(13), 462–467 (2000).
[CrossRef] [PubMed]

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

1999 (1)

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol.44(12), 2897–2906 (1999).
[CrossRef] [PubMed]

1997 (1)

1996 (1)

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996).
[CrossRef] [PubMed]

1995 (3)

’t Hooft, G. W.

Arridge, S. R.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7(13), 462–467 (2000).
[CrossRef] [PubMed]

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A17(9), 1659–1670 (2000).
[CrossRef] [PubMed]

J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, and H. Dehghani, “Boundary conditions for light propagation in diffusive media with nonscattering regions,” J. Opt. Soc. Am. A17(9), 1671–1681 (2000).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol.44(12), 2897–2906 (1999).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996).
[CrossRef] [PubMed]

S. R. Arridge, “Photon-measurement density functions. Part I: analytical forms,” Appl. Opt.34(31), 7395–7409 (1995).
[CrossRef] [PubMed]

Boas, D. A.

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

Chance, B.

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

S. C. Feng, F. A. Zeng, and B. Chance, “Photon migration in the presence of a single defect: a perturbation analysis,” Appl. Opt.34(19), 3826–3837 (1995).
[CrossRef] [PubMed]

Colak, S. B.

Dehghani, H.

Dehghanim, H.

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

Delpy, D. T.

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A17(9), 1659–1670 (2000).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol.44(12), 2897–2906 (1999).
[CrossRef] [PubMed]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996).
[CrossRef] [PubMed]

Fantini, S.

S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Feng, S. C.

Firbank, M.

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996).
[CrossRef] [PubMed]

Foschum, F.

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

Franceschini, M. A.

S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Grabtchak, S.

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011).
[CrossRef] [PubMed]

Gratton, E.

S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Hyvönen, N.

N. Hyvönen, “Locating transparent regions in optical absorption and scattering tomography,” SIAM J. Appl. Math.67(4), 1101–1123 (2007).
[CrossRef]

Kashio, Y.

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

Kienle, A.

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

Liemert, A.

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

Maier, J. S.

S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Melissen, J. B.

Nieto-Vesperinas, M.

Okada, E.

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

Ono, M.

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

Paasschens, J. C.

Palmer, T. J.

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011).
[CrossRef] [PubMed]

Papaioannou, D. G.

Ramanujam, N.

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

Riley, J.

Ripoll, J.

Rode, M.

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

Schomberg, H.

Schotland, J. C.

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

Schweiger, M.

J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, and M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express7(13), 462–467 (2000).
[CrossRef] [PubMed]

H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt. Soc. Am. A17(9), 1659–1670 (2000).
[CrossRef] [PubMed]

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996).
[CrossRef] [PubMed]

Siegel, A.

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

van Asten, N. A.

van der Mark, M. B.

Walker, S. A.

S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995).
[CrossRef]

Whelan, W. M.

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011).
[CrossRef] [PubMed]

Zeng, F. A.

Zourabian, A.

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

Appl. Opt. (3)

Inverse Probl. (1)

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25(12), 123010 (2009).
[CrossRef]

J. Biomed. Opt. (3)

S. Grabtchak, T. J. Palmer, and W. M. Whelan, “Detection of localized inclusions of gold nanoparticles in Intralipid-1% by point-radiance spectroscopy,” J. Biomed. Opt.16(7), 077003 (2011).
[CrossRef] [PubMed]

S. Grabtchak, T. J. Palmer, F. Foschum, A. Liemert, A. Kienle, and W. M. Whelan, “Experimental spectro-angular mapping of light distribution in turbid media,” J. Biomed. Opt.17(6), 067007 (2012).
[CrossRef] [PubMed]

A. Zourabian, A. Siegel, B. Chance, N. Ramanujam, M. Rode, and D. A. Boas, “Trans-abdominal monitoring of fetal arterial blood oxygenation using pulse oximetry,” J. Biomed. Opt.5(4), 391–405 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Express (1)

Opt. Rev. (1)

M. Ono, Y. Kashio, M. Schweiger, H. Dehghanim, S. R. Arridge, M. Firbank, and E. Okada, “Topographic distribution of photon measurement density functions on the brain surface by hybrid radiosity-diffusion method,” Opt. Rev.7(5), 426–431 (2000).
[CrossRef]

Phys. Med. Biol. (2)

M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol.41(4), 767–783 (1996).
[CrossRef] [PubMed]

H. Dehghani, D. T. Delpy, and S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol.44(12), 2897–2906 (1999).
[CrossRef] [PubMed]

Proc. SPIE (1)

S. Fantini, M. A. Franceschini, S. A. Walker, J. S. Maier, and E. Gratton, “Photon path distributions in turbid media: Applications for imaging,” Proc. SPIE2389, 340–349 (1995).
[CrossRef]

SIAM J. Appl. Math. (1)

N. Hyvönen, “Locating transparent regions in optical absorption and scattering tomography,” SIAM J. Appl. Math.67(4), 1101–1123 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual top-view diagrams illustrating the principle of radiance measurements of a void region in a liquid phantom for a) angular experiments, b) distance dependent experiments.

Fig. 2
Fig. 2

a) Contour plot and b) surface plot of RER of water target positioned at 0° in Intralipid vs. radiance detector viewing angle and wavelength. Source-detector separation 12 mm, detector-target separation 6 mm (experimental geometry as in Fig. 1(a) for 0° target).

Fig. 3
Fig. 3

Contour plots of RER of water target positioned at: a) 45°, b) 90°, c) 135°; d) 180° in Intralipid (marked by a dashed line) vs. radiance detector viewing angle and wavelength. All: source-detector separation 12 mm, detector-target separation 6 mm (experimental geometries as in Fig. 1(a) for 45°, 90°, 135° and 180° marked target locations).

Fig. 4
Fig. 4

a) Contour plot of RER of water target in Intralipid at 4-mm detector-target separation at 0°, 12-mm source-detector separation; b) polar plot of RER for the wavelength of 550 nm extracted from (a); c) contour plot of RER of water target in Intralipid at 5-mm detector-target separation at 0°, 34-mm source-detector separation; d) contour plot of RER of water target in Intralipid at 25-mm detector-target separation at 0°, 34-mm source-detector separation.

Fig. 5
Fig. 5

a) Contour plot of spectral dependence of the RER of water target in Intralipid on detector-target separation at 0°; b) contour plot of the angular variation of the RER of water target in Intralipid with detector-target separation for the wavelength of 650 nm. Both: source-detector separation 34 mm, 2-mm incremental steps in detector-target separation.

Fig. 6
Fig. 6

Spectral behavior of ln(1/RER) of water target in Intralipid positioned at 0° for various detector-target separations, 34-mm source-detector distance (measurement geometry as in Fig. 1(b)).

Fig. 7
Fig. 7

a) Weighting factor, K extracted from data from Fig,6 for selected wavelengths, b) spectro-spatial contour plot of weighting factor distribution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ln(1/RER)=ln( I Intralipid+target / I Intralipid )=ln( I 0 / I Intralipid )= μ eff (λ)dK(λ)

Metrics