Abstract

Standoff detection measuring the fluorescence spectra of seven different biological agents excited by 294 nm as well as 355 nm wavelength laser pulses has been undertaken. The biological warfare agent simulants were released in a semi-closed aerosol chamber at 210 m standoff distance and excited by light at either of the two wavelengths using the same instrument. Significant differences in several of the agents’ fluorescence response were seen at the two wavelengths. The anthrax simulants’ fluorescence responses were almost an order of magnitude stronger at the shorter wavelength excitation. However, most importantly, the fluorescence spectra were significantly more dissimilar at 294 nm than at 355 nm excitation with ~7 nm spectral resolution. This indicates that classification of the substances should be possible with a lower error rate for standoff detection using 294 nm rather than 355 nm excitation wavelength, or even better, utilizing both.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Mayor, P. Benda, C. E. Murata, and R. J. Danzig, “Lidars: a key component of urban biodefense,” Biosecur. Bioterror. 6(1), 45–56 (2008).
    [Crossref] [PubMed]
  2. J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457(1), 125–148 (2002).
    [Crossref]
  3. “Laser Based Stand-Off Detection of Biological Agents. Final Report of Task Group SET-098/RTG-55,” RTO-TR-SET-098 AC/323(SET-098)TP/265 (2010). http://www.cso.nato.int/Pubs/rdp.asp?RDP=RTO-TR-SET-098
  4. R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE 8018, 801806, 801806-13 (2011).
    [Crossref]
  5. K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
    [Crossref]
  6. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, FL, 2003).
  7. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  8. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36(4), 958–967 (1997).
    [Crossref] [PubMed]
  9. Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. L. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence,” in Optics of Biological Particles, NATO science series, Vol. 238 of Series II, Mathematics, Physics and Chemistry, A. Hoekstra, V. Maltsev, and G. Videen, eds. (Springer, Dordrecht, 2007), pp 63–164.
  10. P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
    [Crossref]
  11. Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements,” IEEE Sens. J. 10(3), 655–661 (2010).
    [Crossref]
  12. P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).
  13. O. Farsund and G. Rustad, “Sum-Frequency Generation of High-Energy and High-Beam-Quality Ultraviolet Pulses,” Int. J. Opt. 2011, 737684 (2011).
    [Crossref]
  14. G. G. Guilbault, Practical Fluorescence (M. Dekker, New York, 1990).
  15. R. M. Measures, Laser Remote Sensing—Fundamentals and Applications (Krieger, Malabar, FL, 1992).
  16. J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Rem. Sens. 42(4), 865–874 (2004).
    [Crossref]
  17. S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
    [Crossref]
  18. C. Laflamme, J. R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
    [Crossref] [PubMed]
  19. M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
    [Crossref] [PubMed]
  20. D. B. Wetlaufer, Ultraviolet Spectra of Proteins and Amino Acids, Vol. 17 of Advances in Protein Chemistry (Academic, 1962), pp. 303–390.
  21. MODTRAN, Air Force Research Labs, Hanscom AFB, MA, 2008.
  22. Ø. Farsund, G. Arisholm, and G. Rustad, “Improved beam quality from a high energy optical parametric oscillator using crystals with orthogonal critical planes,” Opt. Express 18(9), 9229–9235 (2010).
    [Crossref] [PubMed]
  23. S. Buteau, J.-R. Simard, and S. Rowsell, “Bioaerosols standoff detection simultaneously refereed with particle concentration (ppl) and viability units (ACPLA),” Proc. SPIE 7484, 748408, 748408-12 (2009).
    [Crossref]
  24. A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
    [Crossref] [PubMed]
  25. International Standardisation Organisation, “Water Quality—Detection and Enumeration of Bacteriophages—Part 1: Enumeration of F-Specific RNA Bacteriophages,” EN ISO 10705–1 (International Standardisation Organisation, Geneva, Switzerland, 1995).
  26. V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express 19(7), 6191–6208 (2011).
    [Crossref] [PubMed]
  27. V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
    [Crossref] [PubMed]
  28. C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
    [Crossref] [PubMed]
  29. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express 18(12), 12436–12457 (2010).
    [Crossref] [PubMed]
  30. H. C. Huang, Y. L. Pan, S. C. Hill, R. G. Pinnick, and R. K. Chang, “Real-time measurement of dual-wavelength laser-induced fluorescence spectra of individual aerosol particles,” Opt. Express 16(21), 16523–16528 (2008).
    [Crossref] [PubMed]
  31. M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt. 37(22), 5344–5347 (1998).
    [Crossref] [PubMed]
  32. T. V. Haavardsholm, Ø. Farsund, and G. Rustad, “Biological aerosol standoff detection and agent discrimination based on experimental UV laser induced fluorescence data,” presented at 2008 Algorithm Workshop, DTRA and JSTO (Baltimore, MD, Nov. 4–6, 2008).

2011 (6)

R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE 8018, 801806, 801806-13 (2011).
[Crossref]

O. Farsund and G. Rustad, “Sum-Frequency Generation of High-Energy and High-Beam-Quality Ultraviolet Pulses,” Int. J. Opt. 2011, 737684 (2011).
[Crossref]

C. Laflamme, J. R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[Crossref] [PubMed]

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[Crossref] [PubMed]

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express 19(7), 6191–6208 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (3)

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

S. Buteau, J.-R. Simard, and S. Rowsell, “Bioaerosols standoff detection simultaneously refereed with particle concentration (ppl) and viability units (ACPLA),” Proc. SPIE 7484, 748408, 748408-12 (2009).
[Crossref]

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

2006 (1)

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

2004 (2)

V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
[Crossref] [PubMed]

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Rem. Sens. 42(4), 865–874 (2004).
[Crossref]

2002 (1)

J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457(1), 125–148 (2002).
[Crossref]

1999 (1)

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

1998 (1)

1997 (1)

Aimar, P.

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Arisholm, G.

Barrington, S.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Baxter, K.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Benda, P.

S. D. Mayor, P. Benda, C. E. Murata, and R. J. Danzig, “Lidars: a key component of urban biodefense,” Biosecur. Bioterror. 6(1), 45–56 (2008).
[Crossref] [PubMed]

Berge, M.

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Bottiger, J.

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

Bottiger, J. R.

Bronk, B. V.

Burnett, R. T.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Buteau, S.

Calle, E.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Castle, M.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Causserand, C.

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Chang, R. K.

Chen, B. T.

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

Copeland, R. A.

Danzig, R. J.

S. D. Mayor, P. Benda, C. E. Murata, and R. J. Danzig, “Lidars: a key component of urban biodefense,” Biosecur. Bioterror. 6(1), 45–56 (2008).
[Crossref] [PubMed]

Déry, B.

Duchaine, C.

Elmqvist, M.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

Eversole, J.

Eversole, J. D.

Faris, G. W.

Farsund, O.

O. Farsund and G. Rustad, “Sum-Frequency Generation of High-Energy and High-Beam-Quality Ultraviolet Pulses,” Int. J. Opt. 2011, 737684 (2011).
[Crossref]

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

Farsund, Ø.

R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE 8018, 801806, 801806-13 (2011).
[Crossref]

Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements,” IEEE Sens. J. 10(3), 655–661 (2010).
[Crossref]

Ø. Farsund, G. Arisholm, and G. Rustad, “Improved beam quality from a high energy optical parametric oscillator using crystals with orthogonal critical planes,” Opt. Express 18(9), 9229–9235 (2010).
[Crossref] [PubMed]

Feather, G.

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

Felton, N.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Foot, V.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Furiga, A.

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Glories, M.

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Gustafsson, O.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

Haavardsholm, T. V.

Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements,” IEEE Sens. J. 10(3), 655–661 (2010).
[Crossref]

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

Hill, S. C.

Ho, J.

Holler, S.

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

Houle, O.

Huang, H.

Huang, H. C.

Huston, A.

Huston, A. L.

Ito, K.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Jelger, P.

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Jerrett, M.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Jonsson, P.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Kåsen, I.

Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements,” IEEE Sens. J. 10(3), 655–661 (2010).
[Crossref]

Krewski, D.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Kullander, F.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Laflamme, C.

Lahaie, P.

Larochelle, V.

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Rem. Sens. 42(4), 865–874 (2004).
[Crossref]

Lin, H. B.

Lindgren, M.

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Mathieu, P.

Mayor, S. D.

S. D. Mayor, P. Benda, C. E. Murata, and R. J. Danzig, “Lidars: a key component of urban biodefense,” Biosecur. Bioterror. 6(1), 45–56 (2008).
[Crossref] [PubMed]

McFee, J.

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Rem. Sens. 42(4), 865–874 (2004).
[Crossref]

Moen, H. J. F.

R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE 8018, 801806, 801806-13 (2011).
[Crossref]

Mortelmans, K.

Murata, C. E.

S. D. Mayor, P. Benda, C. E. Murata, and R. J. Danzig, “Lidars: a key component of urban biodefense,” Biosecur. Bioterror. 6(1), 45–56 (2008).
[Crossref] [PubMed]

Nadeau, D.

Niles, S.

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

Nyhavn, R.

R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE 8018, 801806, 801806-13 (2011).
[Crossref]

Olofsson, G.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

Orr, C.-S.

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

Pan, Y. L.

Pan, Y.-L.

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

Persson, R.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

Pickering, A.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Pierre, G.

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Pinnick, R. G.

Pinto, J. F.

Pope, C. A.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Roques, C.

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Roselle, D. C.

Rowsell, S.

S. Buteau, J.-R. Simard, and S. Rowsell, “Bioaerosols standoff detection simultaneously refereed with particle concentration (ppl) and viability units (ACPLA),” Proc. SPIE 7484, 748408, 748408-12 (2009).
[Crossref]

Roy, G.

Rustad, G.

O. Farsund and G. Rustad, “Sum-Frequency Generation of High-Energy and High-Beam-Quality Ultraviolet Pulses,” Int. J. Opt. 2011, 737684 (2011).
[Crossref]

R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE 8018, 801806, 801806-13 (2011).
[Crossref]

Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements,” IEEE Sens. J. 10(3), 655–661 (2010).
[Crossref]

Ø. Farsund, G. Arisholm, and G. Rustad, “Improved beam quality from a high energy optical parametric oscillator using crystals with orthogonal critical planes,” Opt. Express 18(9), 9229–9235 (2010).
[Crossref] [PubMed]

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

Scotto, C.

Seaver, M.

Shi, Y. L.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Simard, J. R.

C. Laflamme, J. R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[Crossref] [PubMed]

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Rem. Sens. 42(4), 865–874 (2004).
[Crossref]

Simard, J.-R.

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt. 50(6), 788–796 (2011).
[Crossref] [PubMed]

S. Buteau, J.-R. Simard, and S. Rowsell, “Bioaerosols standoff detection simultaneously refereed with particle concentration (ppl) and viability units (ACPLA),” Proc. SPIE 7484, 748408, 748408-12 (2009).
[Crossref]

Sivaprakasam, V.

Thun, M.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Thurston, G.

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Tiihonen, M.

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Tjarnhage, T.

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Vahlberg, C.

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Wasterby, P.

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

Withers, P.

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Anal. Chim. Acta (1)

J. Ho, “Future of biological aerosol detection,” Anal. Chim. Acta 457(1), 125–148 (2002).
[Crossref]

Appl. Environ. Microbiol. (1)

A. Furiga, G. Pierre, M. Glories, P. Aimar, C. Roques, C. Causserand, and M. Berge, “Effects of ionic strength on bacteriophage MS2 behavior and their implications for the assessment of virus retention by ultrafiltration membranes,” Appl. Environ. Microbiol. 77(1), 229–236 (2011).
[Crossref] [PubMed]

Appl. Opt. (4)

Biosecur. Bioterror. (1)

S. D. Mayor, P. Benda, C. E. Murata, and R. J. Danzig, “Lidars: a key component of urban biodefense,” Biosecur. Bioterror. 6(1), 45–56 (2008).
[Crossref] [PubMed]

Field Anal. Chem. Technol. (1)

S. C. Hill, R. G. Pinnick, S. Niles, Y.-L. Pan, S. Holler, R. K. Chang, J. Bottiger, B. T. Chen, C.-S. Orr, and G. Feather, “Real-time measurement of fluorescence spectra from single airborne biological particles,” Field Anal. Chem. Technol. 3(4-5), 221–239 (1999).
[Crossref]

IEEE Sens. J. (1)

Ø. Farsund, G. Rustad, I. Kåsen, and T. V. Haavardsholm, “Required Spectral Resolution for Bioaerosol Detection Algorithms Using Standoff Laser-Induced Fluorescence Measurements,” IEEE Sens. J. 10(3), 655–661 (2010).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

J. R. Simard, G. Roy, P. Mathieu, V. Larochelle, J. McFee, and J. Ho, “Standoff sensing of bioaerosols using intensified range-gated spectral analysis of laser-induced fluorescence,” IEEE Trans. Geosci. Rem. Sens. 42(4), 865–874 (2004).
[Crossref]

Int. J. Opt. (1)

O. Farsund and G. Rustad, “Sum-Frequency Generation of High-Energy and High-Beam-Quality Ultraviolet Pulses,” Int. J. Opt. 2011, 737684 (2011).
[Crossref]

N. Engl. J. Med. (1)

M. Jerrett, R. T. Burnett, C. A. Pope, K. Ito, G. Thurston, D. Krewski, Y. L. Shi, E. Calle, and M. Thun, “Long-term ozone exposure and mortality,” N. Engl. J. Med. 360(11), 1085–1095 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Proc. SPIE (5)

S. Buteau, J.-R. Simard, and S. Rowsell, “Bioaerosols standoff detection simultaneously refereed with particle concentration (ppl) and viability units (ACPLA),” Proc. SPIE 7484, 748408, 748408-12 (2009).
[Crossref]

P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, “Evaluation of biological aerosol stand-off detection at a field trial,” Proc. SPIE 7484, 748400I (2009).

P. Jonsson, F. Kullander, C. Vahlberg, P. Jelger, M. Tiihonen, P. Wasterby, T. Tjarnhage, and M. Lindgren, “Spectral detection of ultraviolet laser induced fluorescence from individual bioaerosol particles,” Proc. SPIE 6398, 63980F, 63980F-12 (2006).
[Crossref]

R. Nyhavn, H. J. F. Moen, Ø. Farsund, and G. Rustad, “Optimal classification of standoff bioaerosol measurements using evolutionary algorithms,” Proc. SPIE 8018, 801806, 801806-13 (2011).
[Crossref]

K. Baxter, M. Castle, S. Barrington, P. Withers, V. Foot, A. Pickering, and N. Felton, “UK small scale UVLIF lidar for standoff BW detection,” Proc. SPIE 6739, 67390Z, 67390Z-10 (2007).
[Crossref]

Other (10)

T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, FL, 2003).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).

Y. L. Pan, J. D. Eversole, P. H. Kaye, V. Foot, R. G. Pinnick, S. C. Hill, M. W. Mayo, J. R. Bottiger, A. L. Huston, V. Sivaprakasam, and R. K. Chang, “Bio-aerosol fluorescence,” in Optics of Biological Particles, NATO science series, Vol. 238 of Series II, Mathematics, Physics and Chemistry, A. Hoekstra, V. Maltsev, and G. Videen, eds. (Springer, Dordrecht, 2007), pp 63–164.

“Laser Based Stand-Off Detection of Biological Agents. Final Report of Task Group SET-098/RTG-55,” RTO-TR-SET-098 AC/323(SET-098)TP/265 (2010). http://www.cso.nato.int/Pubs/rdp.asp?RDP=RTO-TR-SET-098

G. G. Guilbault, Practical Fluorescence (M. Dekker, New York, 1990).

R. M. Measures, Laser Remote Sensing—Fundamentals and Applications (Krieger, Malabar, FL, 1992).

International Standardisation Organisation, “Water Quality—Detection and Enumeration of Bacteriophages—Part 1: Enumeration of F-Specific RNA Bacteriophages,” EN ISO 10705–1 (International Standardisation Organisation, Geneva, Switzerland, 1995).

D. B. Wetlaufer, Ultraviolet Spectra of Proteins and Amino Acids, Vol. 17 of Advances in Protein Chemistry (Academic, 1962), pp. 303–390.

MODTRAN, Air Force Research Labs, Hanscom AFB, MA, 2008.

T. V. Haavardsholm, Ø. Farsund, and G. Rustad, “Biological aerosol standoff detection and agent discrimination based on experimental UV laser induced fluorescence data,” presented at 2008 Algorithm Workshop, DTRA and JSTO (Baltimore, MD, Nov. 4–6, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Absorption spectra for the most important fluorescing amino acids; tryptophan, tyrosine and phenylalanine (spectra taken from [20]). (b) Calculated transmission through 1 km of USTD atmosphere with 100 ppb O3 using MODTRAN [21].

Fig. 2
Fig. 2

Sketch of the lidar and its key figures. Pulse energy levels were restricted because of unstable Nd:YAG laser operation at high pulse energies during field use.

Fig. 3
Fig. 3

(a) Excitation laser of the lidar. A 294 nm beam was generated by sum frequency mixing the 1.7 µm OPO signal with the third harmonic (355 nm) of the laser. 294 nm or 355 nm excitation wavelength was selected by adjusting the flip mirror and beam dump, as is explained in the figure. (b) Calculated instrument spectral responses of the biolidar for the four different combinations of color glass filter and grating used, including the ICCD quantum efficiency.

Fig. 4
Fig. 4

(a) Ø500 mm duct through which the lidar was directed, and into which the aerosols were released either wet (1) or dry (2). (b) The APS measured the aerosol size distribution, and was located with its inlet protruding into the pipe (position 3 in Fig. 4(a)).

Fig. 5
Fig. 5

(a) The lidar as seen through the release chamber, 210 m behind. The size of the laser beam inside the test chamber was about 100 mm diameter, i.e., significantly smaller than the 500 mm cross section of the release duct. (b) Photo of the FFI biolidar.

Fig. 6
Fig. 6

(a) Example of raw data during measurement with 294 nm excitation and dissemination of OA (recorded fluorescence spectra as function of time). Color coding indicates signal strength (counts), and a bin corresponds to a spectral channel. (b) Time average of the spectra measured between 14:07 and 14:09 as shown in (a) (i.e., at weak measured fluorescence).

Fig. 7
Fig. 7

(a) Spectral average of measurements acquired during different particle concentration levels (average of measured particle concentration during the acquisition); different agent concentration levels impose different signal levels. (b) Spectra normalized with respect to the particle concentration as measured by the APS coincide at different agent concentrations until the signal approaches background level, where other effects become prominent (same color coding as in (a)).

Fig. 8
Fig. 8

(a) Comparison of measured fluorescence in the spectral range 320-560 nm (blue) and total number of particles (integrated over all aerodynamic diameters) as measured by the APS (dashed black), acquired during the release of OA while operating the lidar with the 294 nm excitation source. (b) Atmospheric influence on fluorescence spectral interval as calculated by MODTRAN, after propagation through 100 m, 200 m, which was the distance used in the experiment, 450 m and 1000 m atmosphere. See text for atmospheric parameters used in the simulations.

Fig. 9
Fig. 9

Measured fluorescence following excitation by 294 nm (blue) and 355 nm (red) pulses for different aerosolized biological agents; (a) BG, (b) BT, (c) EH, (d) E.coli, (e) MS2, (f) OA and (g) SM. The spectra have been corrected for instrument spectral response, excluding ICCD gain, which was set to maximum, (approximately 800x), during all measurements. The fluorescence levels have been normalized with respect to laser pulse energy and particle concentration level.

Fig. 10
Fig. 10

Fluorescence spectra corrected for instrument spectral response, and normalized in order for visual comparison of shape for the seven different agents when excited by (a) 355 nm and (b) 294 nm radiation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E(λ,r)= E L K 0 (λ)T(λ,r) A 0 r 2 N(r) σ F ( λ L ,λ) 4π c τ d 2

Metrics