Abstract

Fixational eye movements remain a major cause of artifacts in optical coherence tomography (OCT) images despite the increases in acquisition speeds. One approach to eliminate the eye motion is to stabilize the ophthalmic imaging system in real-time. This paper describes and quantifies the performance of a tracking OCT system, which combines a phase-stabilized optical frequency domain imaging (OFDI) system and an eye tracking scanning laser ophthalmoscope (TSLO). We show that active eye tracking minimizes artifacts caused by eye drift and micro saccades. The remaining tracking lock failures caused by blinks and large saccades generate a trigger signal which signals the OCT system to rescan corrupted B-scans. Residual motion artifacts in the OCT B-scans are reduced to 0.32 minutes of arc (~1.6 µm) in an in vivo human eye enabling acquisition of high quality images from the optic nerve head and lamina cribrosa pore structure.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
    [CrossRef] [PubMed]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  4. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
    [CrossRef] [PubMed]
  5. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  7. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  8. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004).
    [CrossRef] [PubMed]
  9. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  10. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
    [CrossRef] [PubMed]
  11. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  12. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  13. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
    [PubMed]
  14. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
    [CrossRef] [PubMed]
  15. D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng.10, 137–145 (1963).
    [PubMed]
  16. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt.24(4), 527–537 (1985).
    [CrossRef] [PubMed]
  17. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am.63(8), 921–928 (1973).
    [CrossRef] [PubMed]
  18. R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol.119(1), 1–17 (1953).
    [PubMed]
  19. T. N. Cornsweet, “New technique for the measurement of small eye movements,” J. Opt. Soc. Am.48(11), 808–811 (1958).
    [CrossRef] [PubMed]
  20. R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng.BME-28(7), 488–492 (1981).
    [CrossRef] [PubMed]
  21. R. H. Webb, G. W. Hughes, and F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt.26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  22. J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in Proceedings of the NASA Image Registration Workshop (IRW97) (NASA Goddard Space Flight Center, MD, 1997), pp. 281–292.
  23. M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res.36(13), 1987–1994 (1996).
    [CrossRef] [PubMed]
  24. D. P. Wornson, G. W. Hughes, and R. H. Webb, “Fundus tracking with the scanning laser ophthalmoscope,” Appl. Opt.26(8), 1500–1504 (1987).
    [CrossRef] [PubMed]
  25. R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
    [CrossRef] [PubMed]
  26. D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express13(20), 7937–7947 (2005).
    [CrossRef] [PubMed]
  27. R. D. Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variations,” U.S. patent 5,943,115 (August 24, 1999).
  28. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
    [CrossRef] [PubMed]
  29. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser opthalmoscope,” Biomed. Opt. Express3(10), 2611–2622 (2012).
    [CrossRef]
  30. D. R. Skinner and R. E. Whitcher, “Measurement of the radius of a high-power laser beam near the focus of a lens,” J. Phys. E Sci. Instrum.5(3), 237–238 (1972).
    [CrossRef]
  31. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt.22(21), 3406–3410 (1983).
    [CrossRef] [PubMed]
  32. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010).
    [CrossRef] [PubMed]
  33. S. B. Stevenson, A. Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope,” in ETRA ’10 Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (ACM, 2010), pp. 195–198.
  34. J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik8(6), 207–214 (1971).
    [CrossRef] [PubMed]
  35. M. Ezenman, P. E. Hallett, and R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res.25(11), 1635–1640 (1985).
    [CrossRef] [PubMed]
  36. J. B. Jonas, C. Y. Mardin, U. Schlötzer-Schrehardt, and G. O. Naumann, “Morphometry of the human lamina cribrosa surface,” Invest. Ophthalmol. Vis. Sci.32(2), 401–405 (1991).
    [PubMed]
  37. L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990).
    [CrossRef] [PubMed]
  38. B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
    [CrossRef] [PubMed]
  39. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
    [CrossRef] [PubMed]
  40. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  41. L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res.34(8), 1077–1087 (1994).
    [CrossRef] [PubMed]

2012 (4)

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, and A. Roorda, “High-speed, image-based eye tracking with a scanning laser opthalmoscope,” Biomed. Opt. Express3(10), 2611–2622 (2012).
[CrossRef]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
[CrossRef] [PubMed]

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (1)

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
[PubMed]

2008 (2)

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

2005 (2)

2004 (5)

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

2003 (3)

1996 (1)

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res.36(13), 1987–1994 (1996).
[CrossRef] [PubMed]

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

1994 (1)

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res.34(8), 1077–1087 (1994).
[CrossRef] [PubMed]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

J. B. Jonas, C. Y. Mardin, U. Schlötzer-Schrehardt, and G. O. Naumann, “Morphometry of the human lamina cribrosa surface,” Invest. Ophthalmol. Vis. Sci.32(2), 401–405 (1991).
[PubMed]

1990 (1)

L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990).
[CrossRef] [PubMed]

1987 (2)

1985 (2)

M. Ezenman, P. E. Hallett, and R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res.25(11), 1635–1640 (1985).
[CrossRef] [PubMed]

H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt.24(4), 527–537 (1985).
[CrossRef] [PubMed]

1983 (1)

1981 (1)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng.BME-28(7), 488–492 (1981).
[CrossRef] [PubMed]

1973 (1)

1972 (1)

D. R. Skinner and R. E. Whitcher, “Measurement of the radius of a high-power laser beam near the focus of a lens,” J. Phys. E Sci. Instrum.5(3), 237–238 (1972).
[CrossRef]

1971 (1)

J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik8(6), 207–214 (1971).
[CrossRef] [PubMed]

1963 (1)

D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng.10, 137–145 (1963).
[PubMed]

1958 (1)

1953 (1)

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol.119(1), 1–17 (1953).
[PubMed]

Arathorn, D. W.

Baumann, B.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Beaton, S.

Biedermann, B. R.

Bock, R.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Bonesi, M.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Bower, B. A.

Braaf, B.

Brown, A. E.

L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990).
[CrossRef] [PubMed]

Cable, A.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, M.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
[PubMed]

Chen, T.

Chen, T. C.

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Chen, Y.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Choi, S.

Choma, M.

Collewijn, H.

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res.34(8), 1077–1087 (1994).
[CrossRef] [PubMed]

Cornsweet, T. N.

Crane, H. D.

Dandona, L.

L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990).
[CrossRef] [PubMed]

de Boer, J.

de Boer, J. F.

Delori, F. C.

Dilworth, W.

Ditchburn, R. W.

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol.119(1), 1–17 (1953).
[PubMed]

Drexler, W.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

Duker, J. S.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Enger, C.

L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990).
[CrossRef] [PubMed]

Ezenman, M.

M. Ezenman, P. E. Hallett, and R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res.25(11), 1635–1640 (1985).
[CrossRef] [PubMed]

Fercher, A.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Ferguson, R. D.

Findlay, J. M.

J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik8(6), 207–214 (1971).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Frecker, R. C.

M. Ezenman, P. E. Hallett, and R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res.25(11), 1635–1640 (1985).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gabriele, M.

Garetz, B. A.

Ginsborg, B. L.

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol.119(1), 1–17 (1953).
[PubMed]

Gorczynska, I.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Götzinger, E.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hallett, P. E.

M. Ezenman, P. E. Hallett, and R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res.25(11), 1635–1640 (1985).
[CrossRef] [PubMed]

Hammer, D.

Hammer, D. X.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Hornegger, J.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Huber, R.

Hughes, G. W.

Hyle Park, B.

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Iftimia, N.

Ishikawa, H.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
[PubMed]

D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express13(20), 7937–7947 (2005).
[CrossRef] [PubMed]

Izatt, J.

Izatt, J. A.

Jiang, J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Jonas, J. B.

J. B. Jonas, C. Y. Mardin, U. Schlötzer-Schrehardt, and G. O. Naumann, “Morphometry of the human lamina cribrosa surface,” Invest. Ophthalmol. Vis. Sci.32(2), 401–405 (1991).
[PubMed]

Jones, S. M.

Kagemann, L.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Khosrofian, J. M.

Klein, T.

Ko, T. H.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

Kraus, M. F.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Laut, S.

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. J.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Mardin, C. Y.

J. B. Jonas, C. Y. Mardin, U. Schlötzer-Schrehardt, and G. O. Naumann, “Morphometry of the human lamina cribrosa surface,” Invest. Ophthalmol. Vis. Sci.32(2), 401–405 (1991).
[PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Mayer, M. A.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Nassif, N.

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004).
[CrossRef] [PubMed]

Naumann, G. O.

J. B. Jonas, C. Y. Mardin, U. Schlötzer-Schrehardt, and G. O. Naumann, “Morphometry of the human lamina cribrosa surface,” Invest. Ophthalmol. Vis. Sci.32(2), 401–405 (1991).
[PubMed]

Olivier, S. S.

Park, B.

Park, B. H.

Paunescu, L. A.

Pierce, M.

Pierce, M. C.

Pircher, M.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

Potsaid, B.

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Quigley, H. A.

L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990).
[CrossRef] [PubMed]

Ricco, S.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
[PubMed]

Robinson, D. A.

D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng.10, 137–145 (1963).
[PubMed]

Roorda, A.

Sarunic, M.

Schlötzer-Schrehardt, U.

J. B. Jonas, C. Y. Mardin, U. Schlötzer-Schrehardt, and G. O. Naumann, “Morphometry of the human lamina cribrosa surface,” Invest. Ophthalmol. Vis. Sci.32(2), 401–405 (1991).
[PubMed]

Schuman, J.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
[PubMed]

D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express13(20), 7937–7947 (2005).
[CrossRef] [PubMed]

Schuman, J. S.

R. D. Ferguson, D. X. Hammer, L. A. Paunescu, S. Beaton, and J. S. Schuman, “Tracking optical coherence tomography,” Opt. Lett.29(18), 2139–2141 (2004).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sendtner, R. A.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res.36(13), 1987–1994 (1996).
[CrossRef] [PubMed]

Sheehy, C. K.

Sicam, V. A. D. P.

Skinner, D. R.

D. R. Skinner and R. E. Whitcher, “Measurement of the radius of a high-power laser beam near the focus of a lens,” J. Phys. E Sci. Instrum.5(3), 237–238 (1972).
[CrossRef]

Srinivasan, V. J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

Steele, C. M.

Stetter, M.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res.36(13), 1987–1994 (1996).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Timberlake, G. T.

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res.36(13), 1987–1994 (1996).
[CrossRef] [PubMed]

Tiruveedhula, P.

Torzicky, T.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

Ustun, T.

Van der Steen, J.

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res.34(8), 1077–1087 (1994).
[CrossRef] [PubMed]

van Meurs, J. C.

Van Rijn, L. J.

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res.34(8), 1077–1087 (1994).
[CrossRef] [PubMed]

van Zeeburg, E.

Vermeer, K. A.

Vienola, K. V.

Vogel, C. R.

Webb, R. H.

Werner, J. S.

Whitcher, R. E.

D. R. Skinner and R. E. Whitcher, “Measurement of the radius of a high-power laser beam near the focus of a lens,” J. Phys. E Sci. Instrum.5(3), 237–238 (1972).
[CrossRef]

Wieser, W.

Wojtkowski, M.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

Wollstein, G.

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
[PubMed]

D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express13(20), 7937–7947 (2005).
[CrossRef] [PubMed]

Wornson, D. P.

Yang, C.

Yang, Q.

Yun, S.

Yun, S. H.

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhao, M.

Zotter, S.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

Appl. Opt. (4)

Arch. Ophthalmol. (1)

L. Dandona, H. A. Quigley, A. E. Brown, and C. Enger, “Quantitative regional structure of the normal human lamina cribrosa. A racial comparison,” Arch. Ophthalmol.108(3), 393–398 (1990).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

IEEE Trans. Biomed. Eng. (2)

R. H. Webb and G. W. Hughes, “Scanning laser ophthalmoscope,” IEEE Trans. Biomed. Eng.BME-28(7), 488–492 (1981).
[CrossRef] [PubMed]

D. A. Robinson, “A method of measuring eye movement using a scleral search coil in a magnetic field,” IEEE Trans. Biomed. Eng.10, 137–145 (1963).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

J. B. Jonas, C. Y. Mardin, U. Schlötzer-Schrehardt, and G. O. Naumann, “Morphometry of the human lamina cribrosa surface,” Invest. Ophthalmol. Vis. Sci.32(2), 401–405 (1991).
[PubMed]

J. Opt. Soc. Am. (2)

J. Phys. E Sci. Instrum. (1)

D. R. Skinner and R. E. Whitcher, “Measurement of the radius of a high-power laser beam near the focus of a lens,” J. Phys. E Sci. Instrum.5(3), 237–238 (1972).
[CrossRef]

J. Physiol. (1)

R. W. Ditchburn and B. L. Ginsborg, “Involuntary eye movements during fixation,” J. Physiol.119(1), 1–17 (1953).
[PubMed]

Kybernetik (1)

J. M. Findlay, “Frequency analysis of human involuntary eye movement,” Kybernetik8(6), 207–214 (1971).
[CrossRef] [PubMed]

Med Image Comput Comput Assist Interv (1)

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” Med Image Comput Comput Assist Interv12(Pt 1), 100–107 (2009).
[PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004).
[CrossRef] [PubMed]

Opt. Lett. (1)

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (9)

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express19(21), 20886–20903 (2011).
[CrossRef] [PubMed]

D. Hammer, R. D. Ferguson, N. Iftimia, T. Ustun, G. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, and J. Schuman, “Advanced scanning methods with tracking optical coherence tomography,” Opt. Express13(20), 7937–7947 (2005).
[CrossRef] [PubMed]

B. Braaf, K. A. Vermeer, K. V. Vienola, and J. F. de Boer, “Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans,” Opt. Express20(18), 20516–20534 (2012).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Optom. Vis. Sci. (1)

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “High-speed retinal imaging with polarization-sensitive OCT at 1040 nm,” Optom. Vis. Sci.89(5), 585–592 (2012).
[CrossRef] [PubMed]

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27(1), 45–88 (2008).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Vision Res. (3)

M. Stetter, R. A. Sendtner, and G. T. Timberlake, “A novel method for measuring saccade profiles using the scanning laser ophthalmoscope,” Vision Res.36(13), 1987–1994 (1996).
[CrossRef] [PubMed]

M. Ezenman, P. E. Hallett, and R. C. Frecker, “Power spectra for ocular drift and tremor,” Vision Res.25(11), 1635–1640 (1985).
[CrossRef] [PubMed]

L. J. Van Rijn, J. Van der Steen, and H. Collewijn, “Instability of ocular torsion during fixation: cyclovergence is more stable than cycloversion,” Vision Res.34(8), 1077–1087 (1994).
[CrossRef] [PubMed]

Other (3)

S. B. Stevenson, A. Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope,” in ETRA ’10 Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (ACM, 2010), pp. 195–198.

R. D. Ferguson, “Servo tracking system utilizing phase-sensitive detection of reflectance variations,” U.S. patent 5,943,115 (August 24, 1999).

J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in Proceedings of the NASA Image Registration Workshop (IRW97) (NASA Goddard Space Flight Center, MD, 1997), pp. 281–292.

Supplementary Material (2)

» Media 1: AVI (3921 KB)     
» Media 2: AVI (17473 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

A layout of the optical setup. SLD: Super luminescent diode; VS: Vertical scanner; HS: Horizontal Scanner; DM: Dichroic Mirror; PMT: Photomultiplier tube; MZI: external Mach-Zehnder Interferometer. The numbers are presenting the splitting ratios of the fiber couplers.

Fig. 2
Fig. 2

An overview of the information flow. The TSLO images the retina at 30 frames/s and the eye motion is extracted in the TSLO-PC using the FPGA and GPU. The inverse eye motion signals are then scaled to match the voltage range in the OCT system (Gain). Tracking signals are combined with OCT beam steering signals in the electronic summing junction (+) to compensate for the eye motion in real-time. The tracking validity signal is used to indicate B-scans that need to be rescanned because tracking failures occurred due to large eye motions or blinks.

Fig. 3
Fig. 3

The frequency spectrum of eye motion that was measured from a healthy volunteer (adapted from Sheehy et al. [29]). The spectrum shows similar behavior as reported in the literature [3335].

Fig. 4
Fig. 4

The magnitude of motion correction of the TOCT as a function of frequency. The plot was generated from the eye motion measurement performance of the TSLO (Sheehy et al. [29]) combined with the additional error caused by the latency between the eye motion measurement and the output of correction signals to the OCT galvo scanners.

Fig. 5
Fig. 5

Residual motion that is present in the OCT data after applying the optimal gain setting for eye motion compensation. The standard deviation is 0.37 minutes of arc, which corresponds to approximately 2.7 µm (as comparison the spot size on the human retina was calculated to be 13.7 µm).

Fig. 6
Fig. 6

B-scans taken from the model eye over the course of 5 seconds. (A) B-scans were taken without tracking and the features can be seen oscillating in the trace image. Below the image, all 250 frames were averaged which resulted in a blurry cross-sectional image of the tape layers in the artificial retina. (B) The same location was imaged with tracking. It is clearly seen that the previously seen motion is compensated. Again, below the image, all 250 frames were averaged together and this produced a cross-sectional image of the tape layers with clear structure. (C) The first frame from each data set was taken as reference frame and the consecutive frames were cross-correlated to the selected reference. In C the horizontal B-scan motion is plotted as a function of time. The red curve is derived from A (no tracking) and the blue curve from B (tracking). The standard deviation for the untracked curve is 8.3 arcmin and for tracked 0.4 arcmin. Scale bars indicate 0.5 deg.

Fig. 7
Fig. 7

En face (B-scans integrated over depth) images of the model retina consisting of layers of tape under different conditions. (A) No motion is present and tracking signals are not generated. (B) System is introduced to a horizontal 1 Hz sinusoidal motion with an amplitude of ±12.4 arcmin, tracking is off. (C) Motion is the same as in B but tracking signals are generated and combined with OCT beam steering signals to compensate eye motion. In C it is seen that the original structure of the moving retina is recovered. Scale bars indicate 0.5 deg.

Fig. 8
Fig. 8

B-scan trace image of 250 B-scans consisting of 2000 A-lines/B-scan taken without (A) and with (B) tracking. (A) The left graph shows the eye traces extracted from TSLO videos where blue is the horizontal motion and green is vertical. The B-scan trace image correlates with the blue curve (horizontal motion). On the right, a cross-correlation graph of the OCT data is plotted, which matches well with the TSLO horizontal eye trace. In the OCT cross-correlation plot, the first B-scan of the data set was taken as a reference frame and consecutive frames were cross-correlated against it. Only lateral motion was calculated, axial motion was ignored. (B) Same location as the area in (A) but with tracking. A large saccade is present that is seen as a peak in the cross-correlation curve and as a clear shift in the B-scan trace image. Scale bars indicate 0.5 deg.

Fig. 9
Fig. 9

En face images from 4 different volume data sets. (A) Large field of view (10.6° or 3.11 × 3.11 mm) was imaged without tracking enabled. On the left of the image A the corresponding eye traces are plotted. Below the image, three different areas are shown as zoomed versions from the large image. (B) Same area imaged as in A but tracking was enabled. Enlarged areas show that the motion artifacts are compensated. (C) The smaller field of view (5.3° or 1.56 × 1.56 mm) clearly demonstrates eye motion artifacts. One large saccade causes the scanning grid to acquire data from different position. (D) Same area imaged as in C but with tracking enabled. In this data set there is a large saccade which is tracked well. However, the final image still shows artifacts from brief tracking failures. To fully compensate large eye motions, a validity signal needs to be used to rescan the areas that are affected by improper tracking (see Fig. 10). Scale bars indicate 0.5 deg.

Fig. 10
Fig. 10

Tracked en face images with validity signal. When tracking software lost tracking due to a large saccade or blink, OCT-PC was signaled to step back 10 B-scans and hold that position until tracking was locked again on target. B-scans collected during tracking failure are removed in post-processing and replaced with rescanned counterparts. (Top images) En face of all acquired B-scans is shown. This includes B-scans acquired during large saccades or blinks. The blink can be seen as a black line in the upper left image. (Bottom images) Motion or blink corrupted B-scans are removed from the volume data set. The black line caused by the blink is gone and several large saccades are also removed. Scale bars indicate 1 deg.

Fig. 11
Fig. 11

C-scans extracted from different depths from the ONH movie (Low resolution: Media 1 (3.9 MB), High resolution: Media 2 (17 MB)). Four different data sets were compounded together via image registration to enhance the SNR. The laminar cribrosa mesh-like structure is clearly seen in all selected depths and the pore size increases when moving further away from the center of the optic disc. On the left of the figure, a B-scan is shown to illustrate at which depth each slice (C-scan) was taken (white dashed line indicates the reference point). The porous structure of lamina cribrosa is still visible even at depth of 429 µm measured from the bottom of the ONH cup.

Metrics