Abstract

We demonstrate swept source OCT utilizing vertical-cavity surface emitting laser (VCSEL) technology for in vivo high speed retinal, anterior segment and full eye imaging. The MEMS tunable VCSEL enables long coherence length, adjustable spectral sweep range and adjustable high sweeping rate (50–580 kHz axial scan rate). These features enable integration of multiple ophthalmic applications into one instrument. The operating modes of the device include: ultrahigh speed, high resolution retinal imaging (up to 580 kHz); high speed, long depth range anterior segment imaging (100 kHz) and ultralong range full eye imaging (50 kHz). High speed imaging enables wide-field retinal scanning, while increased light penetration at 1060 nm enables visualization of choroidal vasculature. Comprehensive volumetric data sets of the anterior segment from the cornea to posterior crystalline lens surface are also shown. The adjustable VCSEL sweep range and rate make it possible to achieve an extremely long imaging depth range of ~50 mm, and to demonstrate the first in vivo 3D OCT imaging spanning the entire eye for non-contact measurement of intraocular distances including axial eye length. Swept source OCT with VCSEL technology may be attractive for next generation integrated ophthalmic OCT instruments.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. Schuman, C. A. Puliafito, and J. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Inc., Thorofare, 2004), pp. 1–250.
  3. Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
    [CrossRef] [PubMed]
  4. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
    [CrossRef] [PubMed]
  5. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
    [CrossRef] [PubMed]
  6. M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
    [CrossRef] [PubMed]
  7. D. Huang, J. S. Duker, J. G. Fujimoto, B. Lumbroso, J. S. Schuman, and R. N. Weinreb, Imaging the Eye from Front to Back with RTVue Fourier-Domain Optical Coherence Tomography (Slack Inc., Thorofare, 2010), pp. 1–268.
  8. B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
    [CrossRef] [PubMed]
  9. M. L. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
    [CrossRef] [PubMed]
  10. C. K. S. Leung and R. N. Weinreb, “Anterior chamber angle imaging with optical coherence tomography,” Eye (Lond.)25(3), 261–267 (2011).
    [CrossRef] [PubMed]
  11. J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002).
    [CrossRef] [PubMed]
  12. A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Opt. Lett.13(3), 186–188 (1988).
    [CrossRef] [PubMed]
  13. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  14. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  15. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  16. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  17. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  18. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  19. B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, Berlin, 2008), pp. 209–237.
  20. R. I. MacDonald, “Frequency domain optical reflectometer,” Appl. Opt.20(10), 1840–1844 (1981).
    [CrossRef] [PubMed]
  21. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
    [CrossRef] [PubMed]
  22. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  23. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
    [CrossRef] [PubMed]
  24. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004).
    [CrossRef] [PubMed]
  25. M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
    [CrossRef] [PubMed]
  26. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
    [CrossRef] [PubMed]
  27. B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009).
    [CrossRef] [PubMed]
  28. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  29. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  30. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  31. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
    [CrossRef]
  32. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
    [CrossRef]
  33. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
    [CrossRef]
  34. K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys.47(1), 1–10 (2008).
    [CrossRef]
  35. J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
    [CrossRef]
  36. K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
    [CrossRef]
  37. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range,” in Conference on Lasers and Electro-Optics, Technical Digest (CD), (Optical Society of America, 2011), paper PDPB2.
  38. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
    [CrossRef]
  39. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997).
    [CrossRef] [PubMed]
  40. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express13(26), 10652–10664 (2005).
    [CrossRef] [PubMed]
  41. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  42. Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
    [CrossRef]
  43. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  44. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19(21), 20930–20939 (2011).
    [CrossRef] [PubMed]
  45. T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
    [CrossRef] [PubMed]
  46. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  47. K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE7554, 75542Q, 75542Q-5 (2010).
    [CrossRef]
  48. K. Totsuka, K. Isamoto, T. Sakai, T. Suzuki, A. Morosawa, and C. Chong, “140 kHz optical coherece tomography imaging by MEMS scanner based swept source laser,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2010), paper BTuD108p.
  49. ANSI, American National Standard for Safe Use of Lasers, ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007), pp. 1–249.
  50. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
    [CrossRef] [PubMed]
  51. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]

2012 (3)

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

2011 (6)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19(21), 20930–20939 (2011).
[CrossRef] [PubMed]

J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
[CrossRef]

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
[CrossRef] [PubMed]

C. K. S. Leung and R. N. Weinreb, “Anterior chamber angle imaging with optical coherence tomography,” Eye (Lond.)25(3), 261–267 (2011).
[CrossRef] [PubMed]

2010 (6)

M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
[CrossRef] [PubMed]

M. L. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE7554, 75542Q, 75542Q-5 (2010).
[CrossRef]

2009 (5)

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

2008 (4)

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys.47(1), 1–10 (2008).
[CrossRef]

2007 (2)

2006 (2)

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

2005 (4)

2004 (1)

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (1)

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002).
[CrossRef] [PubMed]

1997 (2)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1988 (1)

1981 (1)

Adler, D. C.

Akiba, M.

Amano, T.

Bajraszewski, T.

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Barry, S.

Baumann, B.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Berendschot, T. T.

M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
[CrossRef] [PubMed]

Biedermann, B. R.

Boudoux, C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
[CrossRef] [PubMed]

Bouma, B. E.

Cable, A.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Cense, B.

Chan, K. P.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, Y. L.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Chinn, S. R.

Choi, D.

Choma, M. A.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

Chong, C.

Chong, C. H.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE7554, 75542Q, 75542Q-5 (2010).
[CrossRef]

Choquette, K. D.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Crawford, M.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

Danner, A. J.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

de Boer, J. F.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

de Brabander, J.

M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
[CrossRef] [PubMed]

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

Doors, M.

M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
[CrossRef] [PubMed]

Duker, J. S.

Eigenwillig, C. M.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Ensher, J.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujiura, K.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Fujiwara, N.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Furukawa, H.

Gil-Flamer, J.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Gilmartin, B.

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002).
[CrossRef] [PubMed]

Goldberg, B. D.

Golubovic, B.

Gora, M.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

Gorczynska, I.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Götzinger, E.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Harris, J. S.

J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
[CrossRef]

Haruna, M.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

Hiro-Oka, H.

Hitzenberger, C. K.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
[CrossRef] [PubMed]

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Hong, Y.

Hsu, K.

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

Huang, D.

M. L. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

Huber, R. A.

Iga, K.

K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys.47(1), 1–10 (2008).
[CrossRef]

Isamoto, K.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE7554, 75542Q, 75542Q-5 (2010).
[CrossRef]

Ishii, H.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Itoh, M.

Izatt, J. A.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Jillella, P.

Jungwirth, J.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Kaluzny, B. J.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Kaluzny, J. J.

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Kano, F.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

Karnowski, K.

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

Kasten, A. M.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Kato, K.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Kawaguchi, Y.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Klein, T.

Kobayashi, J.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Kondo, Y.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Kowalczyk, A.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Lee, M. M.

J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
[CrossRef]

Leisher, P. O.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Leitgeb, R.

Leung, C. K. S.

C. K. S. Leung and R. N. Weinreb, “Anterior chamber angle imaging with optical coherence tomography,” Eye (Lond.)25(3), 261–267 (2011).
[CrossRef] [PubMed]

Li, Y.

M. L. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, A. Q.

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

Lu, A.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

MacDonald, R. I.

Madjarova, V. D.

Makita, S.

Mallen, E. A. H.

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002).
[CrossRef] [PubMed]

Marcos, S.

Mengedoht, K.

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

Miura, M.

Morosawa, A.

Motaghian Nezam, S. M.

Naganuma, K.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Nakanishi, M.

Nuijts, R. M.

M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
[CrossRef] [PubMed]

Oh, W. Y.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

Ohbayashi, K.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

T. Amano, H. Hiro-Oka, D. Choi, H. Furukawa, F. Kano, M. Takeda, M. Nakanishi, K. Shimizu, and K. Ohbayashi, “Optical frequency-domain reflectometry with a rapid wavelength-scanning superstructure-grating distributed Bragg reflector laser,” Appl. Opt.44(5), 808–816 (2005).
[CrossRef] [PubMed]

Ohmi, M.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Okabe, Y.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Omiya, K.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Oohashi, H.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

O'Sullivan, T.

J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
[CrossRef]

Park, B. H.

Pierce, M. C.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Pircher, M.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
[CrossRef] [PubMed]

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Potsaid, B.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Raftery, J. J.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Sakai, T.

Sakai, Y.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Sakamoto, T.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Santodomingo-Rubido, J.

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002).
[CrossRef] [PubMed]

Sarmiento, T.

J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
[CrossRef]

Sarunic, M. V.

Sasaki, Y.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Schmidt-Erfurth, U.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
[CrossRef] [PubMed]

Schmitt, J. M.

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shimizu, K.

Shishkov, M.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

Siriani, D. F.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Srinivasan, V. J.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sulkin, J. D.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Szkulmowski, M.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Szlag, D.

Taira, K.

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

Takeda, M.

Tan, M. P.

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Tan, O.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Tang, M. L.

M. L. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

Targowski, P.

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Tearney, G. J.

Totsuka, K.

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE7554, 75542Q, 75542Q-5 (2010).
[CrossRef]

Toyoda, S.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Trepanier, F.

Ueno, M.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Vakoc, B. J.

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

Vo, S.

J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
[CrossRef]

Wang, Y.

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Webers, C. A. B.

M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
[CrossRef] [PubMed]

Weinreb, R. N.

C. K. S. Leung and R. N. Weinreb, “Anterior chamber angle imaging with optical coherence tomography,” Eye (Lond.)25(3), 261–267 (2011).
[CrossRef] [PubMed]

Werner, W.

Wieser, W.

Wojtkowski, M.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

Wolffsohn, J. S.

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002).
[CrossRef] [PubMed]

Yagi, S.

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Yamanari, M.

Yang, C. H.

Yasuno, Y.

Yatagai, T.

Yoshimura, R.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

Yun, S. H.

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004).
[CrossRef] [PubMed]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett.28(20), 1981–1983 (2003).
[CrossRef] [PubMed]

Zhang, X. M.

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

Adv. Opt. Technol. (1)

K. D. Choquette, D. F. Siriani, A. M. Kasten, M. P. Tan, J. D. Sulkin, P. O. Leisher, J. J. Raftery, and A. J. Danner, “Single Mode Photonic Crystal Vertical Cavity Surface Emitting Lasers,” Adv. Opt. Technol.2012, 280920 (2012).
[CrossRef]

Appl. Opt. (2)

Arch. Ophthalmol. (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

Y. Wang, A. Lu, J. Gil-Flamer, O. Tan, J. A. Izatt, and D. Huang, “Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography,” Br. J. Ophthalmol.93(5), 634–637 (2009).
[CrossRef] [PubMed]

Br. J. Ophthalmol. (1)

J. Santodomingo-Rubido, E. A. H. Mallen, B. Gilmartin, and J. S. Wolffsohn, “A new non-contact optical device for ocular biometry,” Br. J. Ophthalmol.86(4), 458–462 (2002).
[CrossRef] [PubMed]

Electron. Lett. (1)

Y. Okabe, Y. Sasaki, M. Ueno, T. Sakamoto, S. Toyoda, S. Yagi, K. Naganuma, K. Fujiura, Y. Sakai, J. Kobayashi, K. Omiya, M. Ohmi, and M. Haruna, “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett.48(4), 201–202 (2012).
[CrossRef]

Eye (Lond.) (1)

C. K. S. Leung and R. N. Weinreb, “Anterior chamber angle imaging with optical coherence tomography,” Eye (Lond.)25(3), 261–267 (2011).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (2)

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm quasi-continuous fast sweep using SSG-DBR lasers,” IEEE Photon. Technol. Lett.20(12), 1015–1017 (2008).
[CrossRef]

S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Extended-cavity semiconductor wavelength-swept laser for biomedical imaging,” IEEE Photon. Technol. Lett.16(1), 293–295 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. A. Choma, K. Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt.10(4), 044009 (2005).
[CrossRef] [PubMed]

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (1)

M. Doors, T. T. Berendschot, J. de Brabander, C. A. B. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

J. Refract. Surg. (1)

M. L. Tang, Y. Li, and D. Huang, “An intraocular lens power calculation formula based on optical coherence tomography: a pilot study,” J. Refract. Surg.26(6), 430–437 (2010).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

K. Iga, “Vertical-cavity surface-emitting laser: its conception and evolution,” Jpn. J. Appl. Phys.47(1), 1–10 (2008).
[CrossRef]

Ophthalmic Physiol. Opt. (1)

B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt.26(2), 127–132 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005).
[CrossRef] [PubMed]

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (11)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
[CrossRef] [PubMed]

B. D. Goldberg, S. M. Motaghian Nezam, P. Jillella, B. E. Bouma, and G. J. Tearney, “Miniature swept source for point of care optical frequency domain imaging,” Opt. Express17(5), 3619–3629 (2009).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express16(6), 4163–4176 (2008).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19(21), 20930–20939 (2011).
[CrossRef] [PubMed]

Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express13(26), 10652–10664 (2005).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Proc. SPIE (3)

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-Semiconductor High-Speed Akinetic Swept-Source for OCT,” Proc. SPIE8311, 831116, 831116-10 (2011).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60 kHz-1 MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M, 82130M-8 (2012).
[CrossRef]

K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. H. Chong, “MEMS scanner based swept source laser for optical coherence tomography,” Proc. SPIE7554, 75542Q, 75542Q-5 (2010).
[CrossRef]

Prog. Retin. Eye Res. (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

J. S. Harris, T. O'Sullivan, T. Sarmiento, M. M. Lee, and S. Vo, “Emerging applications for vertical cavity surface emitting lasers,” Semicond. Sci. Technol.26(1), 014010 (2011).
[CrossRef]

Other (6)

J. Schuman, C. A. Puliafito, and J. Fujimoto, eds., Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack Inc., Thorofare, 2004), pp. 1–250.

D. Huang, J. S. Duker, J. G. Fujimoto, B. Lumbroso, J. S. Schuman, and R. N. Weinreb, Imaging the Eye from Front to Back with RTVue Fourier-Domain Optical Coherence Tomography (Slack Inc., Thorofare, 2010), pp. 1–268.

B. E. Bouma, G. J. Tearney, B. J. Vakoc, and S. H. Yun, “Optical frequency domain imaging,” in Optical Coherence Tomography: Technology and Applications, W. Drexler and J. G. Fujimoto, eds. (Springer-Verlag, Berlin, 2008), pp. 209–237.

K. Totsuka, K. Isamoto, T. Sakai, T. Suzuki, A. Morosawa, and C. Chong, “140 kHz optical coherece tomography imaging by MEMS scanner based swept source laser,” in Biomedical Optics, Technical Digest (CD) (Optical Society of America, 2010), paper BTuD108p.

ANSI, American National Standard for Safe Use of Lasers, ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007), pp. 1–249.

V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range,” in Conference on Lasers and Electro-Optics, Technical Digest (CD), (Optical Society of America, 2011), paper PDPB2.

Supplementary Material (1)

» Media 1: AVI (2598 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

MEMS-tunable VCSEL light source and its performance. (a) Schematic of VCSEL module: WDM, wavelength-division multiplexer; ISO, isolator; SOA, booster optical amplifiers. Electrical signals indicated by dashed lines. (b) Signal vs. depth of 1060 nm swept light sources: VCSEL and short external-cavity laser.

Fig. 2
Fig. 2

Experimental setup. Retinal imaging was performed by adding ocular lens to anterior segment configuration and adjusting the fixation target path. SC – galvanometric scanners, FT – fixation target, DM – dichroic mirror, DC – dispersion compensation glass, RR – retroreflector, PDB1/PDB2 – balanced photodetectors, MZI – Mach-Zehnder interferometer.

Fig. 3
Fig. 3

Signals in VCSEL module (module driving signal, SOA current waveforms, sweep trigger), MZI fringe and integrated spectrum for selected tuning frequencies: 290 kHz, 100 kHz and 50 kHz.

Fig. 4
Fig. 4

Sensitivity roll-offs of VCSEL-OCT system: (a) point spread functions at different depths in air for the full eye imaging mode at 50 kHz, (b) signal roll-offs for different imaging modes. 6 dB signal drop is indicated by the dashed line.

Fig. 5
Fig. 5

Retinal OCT imaging using VCSEL-tunable light source. Fundus images and selected cross-sections from volumetric data sets acquired at 100 kHz (a), 200 kHz (b) and 580 kHz (c). Red-free fundus photograph indicating scanned areas at different speeds (d). Transverse sampling density and acquisition time are kept constant. Aspect ratio of all presented cross-sections is the same. High speeds enable wide-field imaging.

Fig. 6
Fig. 6

Imaging of the optic nerve head region at different speeds: fundus image (a) and extracted central fast and slow cross-sections showing reduced motion artifacts with increased speed (b).

Fig. 7
Fig. 7

Wide-field choroidal OCT imaging using VCSEL tunable light source. (a) Rendering of volumetric wide-field data set. (b) Virtual (arbitrary) cross-sectional image showing deep light penetration and ability to visualize choroid and sclera. Arrow indicates scleral vessel. (c) Projection OCT image of the entire choroid. Signal below RPE was integrated. Red line indicates direction of section in (b). OCT projection images at a depth of (d) 30 μm, (e) 80 μm and (f) 200 μm below RPE showing choroidal layers and sclera. Signal was integrated from 40 μm thick slices below RPE.

Fig. 8
Fig. 8

Wide-field OCT fundus angiography. OCT fundus image (a), segmented retinal (b) and choroidal vasculature (c), combined OCT fundus image (d). Red-free fundus photography (e). Indocyanine green (ICG) angiography (f). Comparison of details of retinal and choroidal vascular systems (g).

Fig. 9
Fig. 9

Anterior segment imaging with VCSEL-OCT: (a) rendering of the volume, (b) central averaged cross-sectional image, (c) zoomed fragments of the B-scan showing details of the corneal and the crystalline lens.

Fig. 10
Fig. 10

Corneo-scleral imaging: (a) cross-sectional OCT image presenting details of the anterior chamber angle (S – sclera, CB – ciliary body, C – cornea, I – iris); (b) zoomed portion of the image showing aqueous outflow structures (SC – Schlemm’s canal, TM – trabecular meshwork) (c) en-face view of the volumetric data set (red line indicates extracted section presented in (a)); (d) En-face visualization of scleral vessels. Scleral interface was segmented and 1 mm thick slice was integrated.

Fig. 11
Fig. 11

Full eye imaging with ultralong depth range OCT: (a) 3D rendering of volumetric data set (Media 1), (b) central cross-sectional image, (c) central B-scan extracted from data set corrected for light refraction, (d) central depth profile with echoes from the cornea, crystalline lens and the retina allows for determination of intraocular distances.

Tables (3)

Tables Icon

Table 1 Swept light source technology in OCT applications

Tables Icon

Table 2 Configuration and performance of integrated SS-OCT system

Tables Icon

Table 3 Comparison of ocular biometry measurements using VCSEL-OCT, partial coherence interferometry and immersion ultrasound

Metrics