Abstract

We present a novel spectral domain polarization sensitive OCT system (PS-OCT) that operates at an A-scan rate of 70 kHz and supports scan angles of up to 40° × 40°. The high-speed imaging allows the acquisition of up to 1024 × 250 A-scans per 3D scan, which, together with the large field of view, considerably increases the informative value of the images. To demonstrate the excellent performance of the new PS-OCT system, we imaged several healthy volunteers and patients with various diseases such as glaucoma, AMD, Stargardt’s disease, and albinism. The results are compared with clinically established methods such as scanning laser polarimetry and autofluorescence.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  3. W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, Berlin, 2008).
  4. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
    [Crossref] [PubMed]
  5. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
    [Crossref]
  6. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [Crossref] [PubMed]
  7. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
    [Crossref] [PubMed]
  8. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
    [Crossref] [PubMed]
  9. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
    [Crossref] [PubMed]
  10. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
    [Crossref] [PubMed]
  11. H. B. Brink and G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry,” J. Opt. Soc. Am. A 5(1), 49–57 (1988).
    [Crossref] [PubMed]
  12. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
    [Crossref] [PubMed]
  13. B. Thylefors, A. D. Négrel, R. Pararajasegaram, and K. Y. Dadzie, “Global data on blindness,” Bull. World Health Organ. 73(1), 115–121 (1995).
    [PubMed]
  14. H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol. 80(5), 389–393 (1996).
    [Crossref] [PubMed]
  15. A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
    [Crossref] [PubMed]
  16. Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
    [Crossref]
  17. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
    [Crossref] [PubMed]
  18. S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
    [Crossref] [PubMed]
  19. C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
    [Crossref] [PubMed]
  20. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
    [Crossref] [PubMed]
  21. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
    [Crossref] [PubMed]
  22. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [Crossref] [PubMed]
  23. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
    [Crossref] [PubMed]
  24. M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
    [Crossref] [PubMed]
  25. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
    [Crossref] [PubMed]
  26. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
    [Crossref] [PubMed]
  27. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
    [Crossref] [PubMed]
  28. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20(7), 7564–7574 (2012).
    [Crossref] [PubMed]
  29. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
    [Crossref] [PubMed]
  30. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
    [Crossref] [PubMed]
  31. F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
    [Crossref] [PubMed]
  32. J. Choi, H. S. Cho, C. H. Lee, and M. S. Kook, “Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma,” Ophthalmology 113(11), 1954–1960 (2006).
    [Crossref] [PubMed]
  33. A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
    [Crossref] [PubMed]
  34. F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
    [Crossref] [PubMed]

2012 (1)

2011 (3)

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

2010 (2)

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (6)

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

2007 (3)

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref] [PubMed]

2006 (3)

J. Choi, H. S. Cho, C. H. Lee, and M. S. Kook, “Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma,” Ophthalmology 113(11), 1954–1960 (2006).
[Crossref] [PubMed]

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

2004 (2)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

2002 (1)

2001 (1)

1997 (1)

1996 (1)

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol. 80(5), 389–393 (1996).
[Crossref] [PubMed]

1995 (1)

B. Thylefors, A. D. Négrel, R. Pararajasegaram, and K. Y. Dadzie, “Global data on blindness,” Bull. World Health Organ. 73(1), 115–121 (1995).
[PubMed]

1992 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1990 (1)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

1988 (1)

Ahlers, C.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Alencar, L. M.

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

Baumann, B.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref] [PubMed]

Betts, R.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Bienias, R.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Bonesi, M.

Brink, H. B.

Cense, B.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref] [PubMed]

Cho, H. S.

J. Choi, H. S. Cho, C. H. Lee, and M. S. Kook, “Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma,” Ophthalmology 113(11), 1954–1960 (2006).
[Crossref] [PubMed]

Choi, J.

J. Choi, H. S. Cho, C. H. Lee, and M. S. Kook, “Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma,” Ophthalmology 113(11), 1954–1960 (2006).
[Crossref] [PubMed]

Coleman, A.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Dadzie, K. Y.

B. Thylefors, A. D. Négrel, R. Pararajasegaram, and K. Y. Dadzie, “Global data on blindness,” Bull. World Health Organ. 73(1), 115–121 (1995).
[PubMed]

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[Crossref] [PubMed]

Dreher, A. W.

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Drexler, W.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Escaño, M. F.

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

Fercher, A. F.

Findl, O.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Geitzenauer, W.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

Goetzinger, E.

Golbaz, I.

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

Götzinger, E.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20(7), 7564–7574 (2012).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

Hitzenberger, C. K.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20(7), 7564–7574 (2012).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Kanamori, A.

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

Kook, M. S.

J. Choi, H. S. Cho, C. H. Lee, and M. S. Kook, “Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma,” Ophthalmology 113(11), 1954–1960 (2006).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Lee, C. H.

J. Choi, H. S. Cho, C. H. Lee, and M. S. Kook, “Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma,” Ophthalmology 113(11), 1954–1960 (2006).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Leydolt, C.

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

Li, G.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lo, P.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Maeda, H.

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

Makita, S.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

Medeiros, F. A.

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

Michels, S.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

Milner, T. E.

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

Nagai-Kusuhara, A.

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

Nakamura, M.

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

Negi, A.

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

Négrel, A. D.

B. Thylefors, A. D. Négrel, R. Pararajasegaram, and K. Y. Dadzie, “Global data on blindness,” Bull. World Health Organ. 73(1), 115–121 (1995).
[PubMed]

Nelson, J. S.

Papworth, W.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Pararajasegaram, R.

B. Thylefors, A. D. Négrel, R. Pararajasegaram, and K. Y. Dadzie, “Global data on blindness,” Bull. World Health Organ. 73(1), 115–121 (1995).
[PubMed]

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref] [PubMed]

Pierce, M. C.

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Invivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref] [PubMed]

Pircher, M.

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20(7), 7564–7574 (2012).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

Prager, F.

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Quigley, H.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Quigley, H. A.

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol. 80(5), 389–393 (1996).
[Crossref] [PubMed]

Reed, J.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Reiter, K.

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Sample, P. A.

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

Sattmann, H.

Schlanitz, F.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Schlanitz, F. G.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

Schmoll, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schütze, C.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

Shaw, B.

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Simader, C.

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

Sinai, M.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Spalek, T.

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Thylefors, B.

B. Thylefors, A. D. Négrel, R. Pararajasegaram, and K. Y. Dadzie, “Global data on blindness,” Bull. World Health Organ. 73(1), 115–121 (1995).
[PubMed]

Torzicky, T.

Trost, P.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

van Blokland, G. J.

van Gemert, M. J. C.

Vass, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

Vizzeri, G.

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

Wallace, C.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Weinreb, R. N.

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

A. W. Dreher, K. Reiter, and R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992).
[Crossref] [PubMed]

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Winnick, R.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Yamanari, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

Yasuno, Y.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

Zangwill, L. M.

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

Zhou, Q.

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Zotter, S.

Appl. Opt. (1)

Arch. Ophthalmol. (1)

R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol. 108(4), 557–560 (1990).
[Crossref] [PubMed]

Br. J. Ophthalmol. (2)

H. A. Quigley, “Number of people with glaucoma worldwide,” Br. J. Ophthalmol. 80(5), 389–393 (1996).
[Crossref] [PubMed]

S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Götzinger, O. Findl, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium,” Br. J. Ophthalmol. 92(2), 204–209 (2008).
[Crossref] [PubMed]

Bull. World Health Organ. (1)

B. Thylefors, A. D. Négrel, R. Pararajasegaram, and K. Y. Dadzie, “Global data on blindness,” Bull. World Health Organ. 73(1), 115–121 (1995).
[PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

A. Kanamori, A. Nagai-Kusuhara, M. F. Escaño, H. Maeda, M. Nakamura, and A. Negi, “Comparison of confocal scanning laser ophthalmoscopy, scanning laser polarimetry and optical coherence tomography to discriminate ocular hypertension and glaucoma at an early stage,” Graefes Arch. Clin. Exp. Ophthalmol. 244(1), 58–68 (2006).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

F. G. Schlanitz, B. Baumann, T. Spalek, C. Schütze, C. Ahlers, M. Pircher, E. Götzinger, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Performance of automated drusen detection by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(7), 4571–4579 (2011).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47(12), 5487–5494 (2006).
[Crossref] [PubMed]

C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(4), 2149–2157 (2010).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[Crossref] [PubMed]

J Biophotonics (1)

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophotonics 1(2), 129–139 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15(6), 061704 (2010).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, and C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[Crossref] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[Crossref] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Ophthalmology (2)

F. A. Medeiros, G. Vizzeri, L. M. Zangwill, L. M. Alencar, P. A. Sample, and R. N. Weinreb, “Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease,” Ophthalmology 115(8), 1340–1346 (2008).
[Crossref] [PubMed]

J. Choi, H. S. Cho, C. H. Lee, and M. S. Kook, “Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normal-tension glaucoma,” Ophthalmology 113(11), 1954–1960 (2006).
[Crossref] [PubMed]

Opt. Express (7)

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, and C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[Crossref] [PubMed]

T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Götzinger, and C. K. Hitzenberger, “Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography,” Opt. Express 20(7), 7564–7574 (2012).
[Crossref] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[Crossref] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express 17(25), 22704–22717 (2009).
[Crossref] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[Crossref] [PubMed]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[Crossref] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. SPIE (1)

Q. Zhou, J. Reed, R. Betts, P. Trost, P. Lo, C. Wallace, R. Bienias, G. Li, R. Winnick, W. Papworth, and M. Sinai, “Detection of glaucomatous retinal nerve fiber layer damage by scanning laser polarimetry with variable corneal compensation,” Proc. SPIE 4951, 32–41 (2003).
[Crossref]

Prog. Retin. Eye Res. (2)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res. 27(1), 45–88 (2008).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (1)

W. Drexler and J. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, Berlin, 2008).

Supplementary Material (2)

» Media 1: AVI (2379 KB)     
» Media 2: AVI (2153 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the PS-OCT system. SLD, superluminescent diode; PC, polarization controller; FBS, fiber nonpolarizing beam splitter; PBS, fiber polarizing beam splitter; FC, fiber collimator; QWP, quarter-wave plate; DCP, dispersion compensating prism pair; L1-L3, lens; MS1-2, motorized stage; GS, galvanometer scanner; M, mirror; Pellicle BS, pellicle beam splitter; green lines, single mode fiber; red lines, free space beam path; blue lines, polarization maintaining fiber; black lines, cable connection.

Fig. 2
Fig. 2

Exemplary PS-OCT measurement results from a healthy human volunteer (scan angle: 40° × 40°, scan pattern 1024 × 250 A-scans). (A) Pseudo SLO, yellow line marks the location of the corresponding B-scans. (B) Intensity B-scan on logarithmic gray scale. Yellow box indicates area of the magnified image, B1. (C) Retardation image (color scale 0-90°). (D) Optic axis orientation (color scale 0-180°). (E) DOPU image (color scale 0-1). Yellow box indicates area of the magnified image, E1. (F) Segmented depolarizing material (red) overlaid with the intensity image. Yellow box indicates area of the magnified image, F1. (G) Average of 50 intensity B-scans recorded at the same position. (H) Average retardation image. (I) Average optic axis orientation image. (J) DOPU image calculated from a temporal window over 50 B-scans. (K) Depth summation of the number of depolarizing pixels along each A-scan within the 3D data set (color scale 0-100 µm). Areas with low signal quality are displayed in white.

Fig. 3
Fig. 3

2D en face RNFL retardation (A) (color scale 0-50°), thickness (B) (color scale 0-200 µm) and birefringence (C) (color scale 0-0.3°/µm) maps calculated from the same data set presented in Fig. 2. Areas with low signal quality are displayed in gray. Additionally, in the birefringence en face map, areas with RNFL thickness bellow 60 µm are displayed in gray. Red rectangle in B and C indicates an artifact due to incorrect segmentation of the posterior border of the RNFL.

Fig. 4
Fig. 4

Averaged RNFL retardation (A) (color scale 0-50°), thickness (B) (color scale 0-200 µm) and birefringence (C) (color scale 0-0.3°/µm) en face map, calculated for 5 repeated measurements recorded in the same eye of a healthy human volunteer. Scan protocol for each individual measurement: 1024 × 250 A-scans, scan angle 27° × 24°. Areas with low signal quality are display in gray. Additionally, in the birefringence en face map, areas with RNFL thickness below 60 µm are displayed in gray. (D) Retardation measured by SLP (GDx VCC) in the same subject.

Fig. 5
Fig. 5

RNFL retardation (a), thickness (B) and birefringence (C) en face map obtained from a glaucoma suspect patient. Color scaling is the same as in Fig. 3 and Fig. 4. Areas with low signal quality are displayed in gray. Red rectangle in B and C indicates an artifact due to incorrect segmentation of the posterior border of the RNFL.

Fig. 6
Fig. 6

PS-OCT measurement result in a patient with a large PED. (A) Pseudo SLO image. Yellow line indicates the position of the intensity B-scan overlaid with the segmented RPE in red. (B) RPE elevation map (color scale 0-1.2 mm). Media 1 shows a 3D volume rendering of the intensity values with the RPE colored in red. Media 2 shows the same volume rendering of the RPE layer in red without the overlaying tissue.

Fig. 7
Fig. 7

PS-OCT measurement result from a patient with GA and drusen. (A) Pseudo SLO image; yellow line indicates the position of the intensity (B). (C) RPE segmentation B-scan and (D) DOPU image. (E) Depolarizing material thickness map (color scale 0-160 µm). (F) Corresponding autofluorescence image.

Fig. 8
Fig. 8

PS-OCT measurement result from a patient with Stargardt’s disease (pathologic mutations in the ABCA4 gene). (A) Pseudo SLO image; yellow line indicates the position of the intensity. (B). (C) RPE segmentation B-scan and (D) DOPU image. (E) Depolarizing material thickness map (color scale 0–160 µm). (F) Corresponding autofluorescence image.

Fig. 9
Fig. 9

PS-OCT measurement results from a patient with albinism. (A) Pseudo SLO image; yellow line marks the position of the exemplary intensity (B). (C) DOPU and (D) RPE segmentation B-scans . The yellow boxes in (B)-(D) mark the position of the magnified areas on the right. (E) Depolarizing material thickness map (color scale 0-100 µm).

Metrics