Abstract

The most common technology for seizure detection is with electroencephalography (EEG), which has low spatial resolution and minimal depth discrimination. Optical techniques using near-infrared (NIR) light have been used to improve upon EEG technology and previous research has suggested that optical changes, specifically changes in near-infrared optical scattering, may precede EEG seizure onset in in vivo models. Optical coherence tomography (OCT) is a high resolution, minimally invasive imaging technique, which can produce depth resolved cross-sectional images. In this study, OCT was used to detect changes in optical properties of cortical tissue in vivo in mice before and during the induction of generalized seizure activity. We demonstrated that a significant decrease (P < 0.001) in backscattered intensity during seizure progression can be detected before the onset of observable manifestations of generalized (stage-5) seizures. These results indicate the feasibility of minimally-invasive optical detection of seizures with OCT.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
    [CrossRef] [PubMed]
  2. R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p .
    [CrossRef] [PubMed]
  3. W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011).
    [CrossRef] [PubMed]
  4. L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
    [CrossRef]
  5. J. R. Weber, M. S. Hsu, A. Lin, D. Lee, C. Owen, D. K. Binder, D. J. Cuccia, W. R. Johnson, G. Bearman, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of seizure using multispectral spatial frequency domain imaging,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD110p.
  6. D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004).
    [CrossRef] [PubMed]
  7. K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).
  8. K. Holthoff and O. W. Witte, “Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution,” Brain Res. Bull.47(6), 649–655 (1998).
    [CrossRef] [PubMed]
  9. A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
    [CrossRef] [PubMed]
  10. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
    [CrossRef]
  11. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  12. Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
    [PubMed]
  13. M. Sato, D. Nomura, T. Tsunenari, and I. Nishidate, “In vivo rat brain measurements of changes in signal intensity depth profiles as a function of temperature using wide-field optical coherence tomography,” Appl. Opt.49(30), 5686–5696 (2010).
    [CrossRef] [PubMed]
  14. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006).
    [CrossRef] [PubMed]
  15. Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
    [CrossRef] [PubMed]
  16. U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett.32(17), 2614–2616 (2007).
    [CrossRef] [PubMed]
  17. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  18. D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
    [CrossRef] [PubMed]
  19. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003).
    [CrossRef] [PubMed]
  20. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  21. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
    [CrossRef] [PubMed]
  22. K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
    [CrossRef] [PubMed]
  23. Y. Wang, C. M. Oh, M. C. Oliveira, M. S. Islam, A. Ortega, and B. H. Park, “GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300 nm,” Opt. Express20(14), 14797–14813 (2012).
    [CrossRef] [PubMed]
  24. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003).
    [CrossRef] [PubMed]
  25. K. K. Akula, A. Dhir, and S. K. Kulkarni, “Effect of various antiepileptic drugs in a pentylenetetrazol-induced seizure model in mice,” Methods Find. Exp. Clin. Pharmacol.31(7), 423–432 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011).
[CrossRef] [PubMed]

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p .
[CrossRef] [PubMed]

K. K. Akula, A. Dhir, and S. K. Kulkarni, “Effect of various antiepileptic drugs in a pentylenetetrazol-induced seizure model in mice,” Methods Find. Exp. Clin. Pharmacol.31(7), 423–432 (2009).
[CrossRef] [PubMed]

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2004 (5)

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
[PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004).
[CrossRef] [PubMed]

2003 (4)

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

1998 (1)

K. Holthoff and O. W. Witte, “Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution,” Brain Res. Bull.47(6), 649–655 (1998).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Aguirre, A. D.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006).
[CrossRef] [PubMed]

Akula, K. K.

K. K. Akula, A. Dhir, and S. K. Kulkarni, “Effect of various antiepileptic drugs in a pentylenetetrazol-induced seizure model in mice,” Methods Find. Exp. Clin. Pharmacol.31(7), 423–432 (2009).
[CrossRef] [PubMed]

Andrzejak, R. G.

R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p .
[CrossRef] [PubMed]

Bajraszewski, T.

Benn, E. K.

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

Beop-Min, K.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

Binder, D. K.

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
[CrossRef] [PubMed]

D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004).
[CrossRef] [PubMed]

Bizheva, K.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Boas, D. A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006).
[CrossRef] [PubMed]

Bouma, B. E.

Cascino, G.

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Changkyun, I.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

Chen, Y.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006).
[CrossRef] [PubMed]

Chicharro, D.

R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p .
[CrossRef] [PubMed]

Choma, M. A.

Cowey, A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Dalkwon, K.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

de Boer, J. F.

Devor, A.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006).
[CrossRef] [PubMed]

Dhir, A.

K. K. Akula, A. Dhir, and S. K. Kulkarni, “Effect of various antiepileptic drugs in a pentylenetetrazol-induced seizure model in mice,” Methods Find. Exp. Clin. Pharmacol.31(7), 423–432 (2009).
[CrossRef] [PubMed]

Drexler, W.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Elger, C. E.

R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p .
[CrossRef] [PubMed]

Fercher, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gill, A. S.

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Haggie, P. M.

D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004).
[CrossRef] [PubMed]

Hauser, W. A.

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

Hesdorffer, D. C.

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

Holthoff, K.

K. Holthoff and O. W. Witte, “Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution,” Brain Res. Bull.47(6), 649–655 (1998).
[CrossRef] [PubMed]

Holzwarth, R.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Hsu, M. S.

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hyun, J. L.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

Hyung-Cheul, S.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

Islam, M. S.

Izatt, J. A.

Katri, N.

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

Kulkarni, S. K.

K. K. Akula, A. Dhir, and S. K. Kulkarni, “Effect of various antiepileptic drugs in a pentylenetetrazol-induced seizure model in mice,” Methods Find. Exp. Clin. Pharmacol.31(7), 423–432 (2009).
[CrossRef] [PubMed]

Le, T.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Le Van Quyen, M.

W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011).
[CrossRef] [PubMed]

Leitgeb, R. A.

Lin, A. J.

K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Logroscino, G.

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

Ma, T.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
[CrossRef] [PubMed]

Manley, G. T.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
[CrossRef] [PubMed]

Mei, M.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Morgan, J. E.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Mormann, F.

W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011).
[CrossRef] [PubMed]

R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p .
[CrossRef] [PubMed]

Nishidate, I.

Nomura, D.

Oh, C. M.

Oliveira, M. C.

Ooi, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
[PubMed]

Ortega, A.

Oshio, K.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
[CrossRef] [PubMed]

Owen, C. M.

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

Papadopoulos, M. C.

D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004).
[CrossRef] [PubMed]

Park, B. H.

Pierce, M. C.

Povazay, B.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Rajagopalan, U. M.

Rajneesh, K. F.

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).

Reitsamer, H. A.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Ruvinskaya, L.

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett.31(23), 3459–3461 (2006).
[CrossRef] [PubMed]

Sarunic, M. V.

Sato, M.

Satomura, Y.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
[PubMed]

Sattmann, H.

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

Schulze-Bonhage, A.

W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seiyama, A.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
[PubMed]

Seki, J.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
[PubMed]

Seungduk, L.

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

Stacey, W.

W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011).
[CrossRef] [PubMed]

Stingl, A.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tanifuji, M.

Tearney, G. J.

Tsunenari, T.

Unterhuber, A.

R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004).
[CrossRef] [PubMed]

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

Verkman, A. S.

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
[CrossRef] [PubMed]

D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004).
[CrossRef] [PubMed]

Wang, Y.

Witte, O. W.

K. Holthoff and O. W. Witte, “Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution,” Brain Res. Bull.47(6), 649–655 (1998).
[CrossRef] [PubMed]

Yanagida, T.

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
[PubMed]

Yang, C.

Yeh, J.

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

Yeh, J. J.

K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).

Yun, S. H.

Appl. Opt. (1)

Brain Res. Bull. (1)

K. Holthoff and O. W. Witte, “Intrinsic optical signals in vitro: a tool to measure alterations in extracellular space with two-dimensional resolution,” Brain Res. Bull.47(6), 649–655 (1998).
[CrossRef] [PubMed]

Clin. Hemorheol. Microcirc. (1)

Y. Satomura, J. Seki, Y. Ooi, T. Yanagida, and A. Seiyama, “In vivo imaging of the rat cerebral microvessels with optical coherence tomography,” Clin. Hemorheol. Microcirc.31(1), 31–40 (2004).
[PubMed]

Clin. Neurophysiol. (1)

R. G. Andrzejak, D. Chicharro, C. E. Elger, and F. Mormann, “Seizure prediction: any better than chance?” Clin. Neurophysiol.120(8), 1465–1478 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=BIOMED-2010-BSuD110p .
[CrossRef] [PubMed]

Epilepsy Res. (1)

W. Stacey, M. Le Van Quyen, F. Mormann, and A. Schulze-Bonhage, “What is the present-day EEG evidence for a preictal state?” Epilepsy Res.97(3), 243–251 (2011).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

J. Biomed. Opt. (1)

K. Bizheva, A. Unterhuber, B. Hermann, B. Povazay, H. Sattmann, W. Drexler, A. Stingl, T. Le, M. Mei, R. Holzwarth, H. A. Reitsamer, J. E. Morgan, and A. Cowey, “Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography,” J. Biomed. Opt.9(4), 719–724 (2004).
[CrossRef] [PubMed]

J. Korean Phys. Soc. (1)

L. Seungduk, J. L. Hyun, I. Changkyun, S. Hyung-Cheul, K. Dalkwon, and K. Beop-Min, “Simultaneous measurement of hemodynamic and neuronal activities using near-infrared spectroscopy and single-unit recording,” J. Korean Phys. Soc.58(6), 1697–1702 (2011).
[CrossRef]

J. Neurosci. (1)

D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, “In vivo measurement of brain extracellular space diffusion by cortical surface photobleaching,” J. Neurosci.24(37), 8049–8056 (2004).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

Y. Chen, A. D. Aguirre, L. Ruvinskaya, A. Devor, D. A. Boas, and J. G. Fujimoto, “Optical coherence tomography (OCT) reveals depth-resolved dynamics during functional brain activation,” J. Neurosci. Methods178(1), 162–173 (2009).
[CrossRef] [PubMed]

J. Neurosurg. (2)

K. F. Rajneesh, A. J. Lin, J. J. Yeh, M. S. Hsu, and D. K. Binder, “Optical detection of the pre-seizure state in-vivo,” J. Neurosurg.113(2), A422–A423 (2010).

A. S. Gill, K. F. Rajneesh, C. M. Owen, J. Yeh, M. S. Hsu, and D. K. Binder, “Early optical detection of cerebral edema in vivo,” J. Neurosurg.114(2), 470–477 (2011).
[CrossRef] [PubMed]

Methods Find. Exp. Clin. Pharmacol. (1)

K. K. Akula, A. Dhir, and S. K. Kulkarni, “Effect of various antiepileptic drugs in a pentylenetetrazol-induced seizure model in mice,” Methods Find. Exp. Clin. Pharmacol.31(7), 423–432 (2009).
[CrossRef] [PubMed]

Neurology (1)

D. C. Hesdorffer, G. Logroscino, E. K. Benn, N. Katri, G. Cascino, and W. A. Hauser, “Estimating risk for developing epilepsy: a population-based study in Rochester, Minnesota,” Neurology76(1), 23–27 (2011).
[CrossRef] [PubMed]

Neuroreport (1)

D. K. Binder, K. Oshio, T. Ma, A. S. Verkman, and G. T. Manley, “Increased seizure threshold in mice lacking aquaporin-4 water channels,” Neuroreport15(2), 259–262 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

J. R. Weber, M. S. Hsu, A. Lin, D. Lee, C. Owen, D. K. Binder, D. J. Cuccia, W. R. Johnson, G. Bearman, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of seizure using multispectral spatial frequency domain imaging,” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BSuD110p.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the SD-OCT system. SLD: superluminescent diode, lsc: line scan camera, gm: galvanometer.

Fig. 2
Fig. 2

Reduction in intensity during seizure progression. (A) OCT images of mice brain, one for each experiment, acquired in vivo with axial and lateral resolutions of 8 µm and 20 µm respectively. The red boxes indicate the ROIs used for average intensity calculations. The scale bar is 0.5 mm. (B) Plots of normalized intensity (NI) from the ROIs on left over time. The occurrences of the experimental steps are indicated: S: Saline injection (first red bar), PTZ: PTZ injection (second red bar), FMJ: Facial myoclonic jerks (green dashed line), FS: Full stage-5 seizure (blue dashed line). The gray region is the 2SD interval above and below the mean of the 10 min baseline.

Fig. 3
Fig. 3

OCT-detected “optical threshold” precedes myoclonic jerks and full seizure. Latency from PTZ injection (min) displayed for optical threshold (defined as 2SD change in intensity), myoclonic jerks, and full stage-5 (generalized tonic-clonic) seizure. Optical threshold crossing preceded both myoclonic jerks (focal seizure) and generalized seizure, indicating the ability of OCT to optically detect pre-seizure state.

Fig. 4
Fig. 4

Plot of the three average slopes: Baseline, Post saline injection, and Post PTZ injection. The average slopes were calculated from four seizure experimental data sets. The interval bars were calculated with a 90% confidence interval using the t-distribution. NI: Normalized Intensity, t: time (min), Inj.: Injection.

Tables (1)

Tables Icon

Table 1 ANOVA for the average slopes of the three experimental steps

Metrics