Abstract

In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  3. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
    [CrossRef] [PubMed]
  4. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
    [CrossRef] [PubMed]
  5. S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
    [CrossRef] [PubMed]
  6. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  7. Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett.36(20), 3975–3977 (2011).
    [CrossRef] [PubMed]
  8. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  9. X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
    [CrossRef] [PubMed]
  10. X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
    [CrossRef] [PubMed]
  11. L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
    [CrossRef] [PubMed]
  12. J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
    [CrossRef] [PubMed]

2011 (4)

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

Y. Wang, C. Li, and R. K. Wang, “Noncontact photoacoustic imaging achieved by using a low-coherence interferometer as the acoustic detector,” Opt. Lett.36(20), 3975–3977 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (2)

2008 (1)

2007 (1)

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

2006 (2)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Cannata, J. M.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Fawzi, A. A.

Hu, C. H.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Hu, S.

Jiang, M.

Jiao, S.

Li, C.

Li, X.

Maslov, K.

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

Puliafito, C. A.

Shung, K. K.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
[CrossRef] [PubMed]

Song, L.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Wang, L. V.

L. Song, K. Maslov, and L. V. Wang, “Multifocal optical-resolution photoacoustic microscopy in vivo,” Opt. Lett.36(7), 1236–1238 (2011).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

Wang, R. K.

Wang, Y.

Williams, J. A.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Xie, Z.

Zhang, H. F.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
[CrossRef] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett.33(9), 929–931 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

Zhang, L.

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

Zhang, X.

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

X. Zhang, M. Jiang, A. A. Fawzi, X. Li, K. K. Shung, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Simultaneous dual molecular contrasts provided by the absorbed photons in photoacoustic microscopy,” Opt. Lett.35(23), 4018–4020 (2010).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. M. Cannata, J. A. Williams, L. Zhang, C. H. Hu, and K. K. Shung, “A high-frequency linear ultrasonic array utilizing an interdigitally bonded 2-2 piezo-composite,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control58(10), 2202–2212 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” J. Biomed. Opt.11(5), 054033 (2006).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, “Photoacoustic imaging and characterization of the microvasculature,” J. Biomed. Opt.15(1), 011101 (2010).
[CrossRef] [PubMed]

X. Zhang, H. F. Zhang, C. A. Puliafito, and S. Jiao, “Simultaneous in vivo imaging of melanin and lipofuscin in the retina with photoacoustic ophthalmoscopy and autofluorescence imaging,” J. Biomed. Opt.16(8), 080504 (2011).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol.24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics3(9), 503–509 (2009).
[CrossRef] [PubMed]

Nat. Protoc. (1)

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental laser-scanning PAM system with an ultrasonic phased array. ND: neutral density filter; M: mirror; L: lens; PAUT: phased array ultrasonic transducer; DSP: digital signal processor. x: lateral direction; y: elevation direction; z: axial direction.

Fig. 2
Fig. 2

(a) A photograph of the ultrasonic phased array; (b) A-line signals from all 64 channels; (c) resultant A-line signal after 64-channnel beamforming.

Fig. 3
Fig. 3

Mean SNR of the each element and the mean SNR with 64-channel beamforming.

Fig. 4
Fig. 4

Images of the resolution target (both images are displayed with a dynamic range of 30 dB). (a) Maximum amplitude projection (MAP) image acquired by one of the array elements (#32); (b) MAP image after 64-channel beamforming. Bar: 200 µm.

Fig. 5
Fig. 5

Microvascular images of a mouse ear in vivo (both images are displayed with a dynamic range of 30 dB). (a) MAP image acquired by one of the array elements (#32); (b) MAP image after 64-channel beamforming. Bar: 200 µm.

Metrics