Abstract

We demonstrate noninvasive structural and microvascular contrast imaging of different human skin diseases in vivo using an intensity difference analysis of OCT tomograms. The high-speed swept source OCT system operates at 1310 nm with 220 kHz A-scan rate. It provides an extended focus by employing a Bessel beam. The studied lesions were two cases of dermatitis and two cases of basal cell carcinoma. The lesions show characteristic vascular patterns that are significantly different from healthy skin. In case of inflammation, vessels are dilated and perfusion is increased. In case of basal cell carcinoma, the angiogram shows a denser network of unorganized vessels with large vessels close to the skin surface. Those results indicate that assessing vascular changes yields complementary information with important insight into the metabolic demand.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
    [CrossRef] [PubMed]
  2. T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
    [CrossRef] [PubMed]
  3. R. A. Leitgeb, “Current technologies for high speed and functional imaging with optical coherence tomography,” in Advances in Imaging and Electron Physics, Volume 168: Optics of Charged Particle Analyzers, P. W. Hawkes, ed. (Elsevier, 2011), Chap. 3.
  4. Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
    [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  6. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
    [CrossRef] [PubMed]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  8. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  9. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  10. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  11. G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
    [CrossRef] [PubMed]
  12. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011).
    [CrossRef] [PubMed]
  13. L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
    [CrossRef] [PubMed]
  14. J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
    [CrossRef] [PubMed]
  15. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett.31(16), 2450–2452 (2006).
    [CrossRef] [PubMed]
  16. A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
    [CrossRef] [PubMed]
  17. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  18. C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19(13), 12141–12155 (2011).
    [CrossRef] [PubMed]
  19. A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
    [CrossRef] [PubMed]
  20. E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
    [CrossRef] [PubMed]
  21. A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
    [CrossRef]
  22. D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).
  23. J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res.295(2), 50–55 (2003).
    [CrossRef] [PubMed]
  24. T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
    [CrossRef] [PubMed]
  25. J. M. Olmedo, K. E. Warschaw, J. M. Schmitt, and D. L. Swanson, “Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study,” J. Am. Acad. Dermatol.55(3), 408–412 (2006).
    [CrossRef] [PubMed]
  26. K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
    [CrossRef] [PubMed]
  27. J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res.60(14), 3683–3688 (2000).
    [PubMed]
  28. B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
    [CrossRef] [PubMed]
  29. T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
    [CrossRef] [PubMed]

2012 (2)

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

2011 (6)

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011).
[CrossRef] [PubMed]

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19(13), 12141–12155 (2011).
[CrossRef] [PubMed]

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

2010 (3)

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

2009 (2)

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

2007 (1)

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

2006 (3)

2003 (4)

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res.295(2), 50–55 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

2001 (2)

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

2000 (3)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Ahlers, C.

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

Alex, A.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Altamura, D.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Altmeyer, P.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

An, L.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Anderson, C.

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Argenziano, G.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Avramidis, M.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Bachmann, A. H.

Baish, J. W.

J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res.60(14), 3683–3688 (2000).
[PubMed]

Bartlett, L. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Bauer, A.

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

Bechara, F. G.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

Biedermann, B. R.

Binder, M.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

Binder, S.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Blatter, C.

C. Blatter, B. Grajciar, C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, and R. A. Leitgeb, “Extended focus high-speed swept source OCT with self-reconstructive illumination,” Opt. Express19(13), 12141–12155 (2011).
[CrossRef] [PubMed]

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

Bouma, B. E.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Brecke, K. M.

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Brown, E. B.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

Bruhns, M.

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res.295(2), 50–55 (2003).
[CrossRef] [PubMed]

Cadotte, D. W.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Campbell, R. B.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

Carmeliet, P.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

Cense, B.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Chen, Z.

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000).
[CrossRef] [PubMed]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett.25(18), 1358–1360 (2000).
[CrossRef] [PubMed]

Choi, B.

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Choma, M.

Christ, F.

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

de Boer, J. F.

DeAmbrosis, K.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Ding, Z.

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Drexler, W.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Eibl, M.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Enfield, J.

Fargnoli, M. C.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Fercher, A.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Fischer, T.

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fukumura, D.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

Fullerton, A.

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Gambichler, T.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

Gareau, D.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Genzel-Boroviczeny, O.

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

Glittenberg, C.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Grajciar, B.

Hiedl, S.

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Hofer, B.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Hoffmann, K.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

Huber, R.

Izatt, J.

Jaedicke, V.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

Jain, R. K.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res.60(14), 3683–3688 (2000).
[PubMed]

Jia, W.

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Jiang, J.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Jonathan, E.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Kroth, J.

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

Lanning, R. M.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Lasser, T.

Leahy, M.

Lee, K. K.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Liu, G.

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Mariampillai, A.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Menzies, S. W.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Moussa, G.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

Munn, L. L.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Nelson, J. S.

Nilsson, G. E.

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Nussbaum, C.

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

Olmedo, J. M.

J. M. Olmedo, K. E. Warschaw, J. M. Schmitt, and D. L. Swanson, “Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study,” J. Am. Acad. Dermatol.55(3), 408–412 (2006).
[CrossRef] [PubMed]

Orlikov, A.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

Padera, T. P.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Park, B. H.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Pehamberger, H.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

Peris, K.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Pierce, M. C.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Popov, S.

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Považay, B.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Qin, J.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Ren, H.

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Sarunic, M.

Saxer, C.

Schmidt-Erfurth, U.

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Olmedo, K. E. Warschaw, J. M. Schmitt, and D. L. Swanson, “Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study,” J. Am. Acad. Dermatol.55(3), 408–412 (2006).
[CrossRef] [PubMed]

Schmoll, T.

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

Schriefl, S.

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

Sera, F.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Serup, J.

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Shen, Q.

Singh, A. S.

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

Soyer, H. P.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Standish, B. A.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Steinmann, L.

Stücker, M.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Stylianopoulos, T.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Sun, V.

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Swanson, D. L.

J. M. Olmedo, K. E. Warschaw, J. M. Schmitt, and D. L. Swanson, “Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study,” J. Am. Acad. Dermatol.55(3), 408–412 (2006).
[CrossRef] [PubMed]

Tearney, G. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Terras, S.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

Tsuzuki, Y.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

Tyrrell, J. A.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Vakoc, B. J.

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Vasa, R.

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

Villiger, M.

Wang, R. K.

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

L. An, J. Qin, and R. K. Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” Opt. Express18(8), 8220–8228 (2010).
[CrossRef] [PubMed]

Wårdell, K.

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Warschaw, K. E.

J. M. Olmedo, K. E. Warschaw, J. M. Schmitt, and D. L. Swanson, “Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study,” J. Am. Acad. Dermatol.55(3), 408–412 (2006).
[CrossRef] [PubMed]

Weidlich, K.

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

Weingast, J.

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

Welzel, J.

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res.295(2), 50–55 (2003).
[CrossRef] [PubMed]

Wieser, W.

Wilhelm, K.-P.

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

Wilson, B. C.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Wojtkowski, M.

Wolff, H. H.

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res.295(2), 50–55 (2003).
[CrossRef] [PubMed]

Xiang, S.

Xu, L.

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

Yang, C.

Yang, V. X.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Yu, J. X.

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Zalaudek, I.

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

Zhao, Y.

Arch. Dermatol. Res. (2)

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

J. Welzel, M. Bruhns, and H. H. Wolff, “Optical coherence tomography in contact dermatitis and psoriasis,” Arch. Dermatol. Res.295(2), 50–55 (2003).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, and V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomed. Opt. Express3(7), 1557–1564 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

T. Schmoll, A. S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, and R. A. Leitgeb, “Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension,” Biomed. Opt. Express2(5), 1159–1168 (2011).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Cancer Res. (1)

J. W. Baish and R. K. Jain, “Fractals and cancer,” Cancer Res.60(14), 3683–3688 (2000).
[PubMed]

Contact Dermat. (1)

A. Fullerton, M. Stücker, K.-P. Wilhelm, K. Wårdell, C. Anderson, T. Fischer, G. E. Nilsson, J. Serup, and European Society of Contact Dermatitis Standardization Group, “Guidelines for visualization of cutaneous blood flow by laser Doppler perfusion imaging. A report from the Standardization Group of the European Society of Contact Dermatitis based upon the HIRELADO European community project,” Contact Dermat.46(3), 129–140 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhao, K. M. Brecke, H. Ren, Z. Ding, J. S. Nelson, and Z. Chen, “Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron.7(6), 931–935 (2001).
[CrossRef]

Imaging Medicine (1)

A. Alex, J. Weingast, B. Hofer, M. Eibl, M. Binder, H. Pehamberger, W. Drexler, and B. Považay, “3D optical coherence tomography for clinical diagnosis of nonmelanoma skin cancers,” Imaging Medicine3(6), 653–674 (2011).
[CrossRef]

J. Am. Acad. Dermatol. (1)

D. Altamura, S. W. Menzies, G. Argenziano, I. Zalaudek, H. P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M. C. Fargnoli, and K. Peris, “Key points in dermoscopic diagnosis of basal cell carcinoma and seborrheic keratosis in Japanese,” J. Am. Acad. Dermatol.62, 59–65 (2010).

J. Am. Acad. Dermatol. (1)

J. M. Olmedo, K. E. Warschaw, J. M. Schmitt, and D. L. Swanson, “Optical coherence tomography for the characterization of basal cell carcinoma in vivo: a pilot study,” J. Am. Acad. Dermatol.55(3), 408–412 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Alex, B. Považay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

J. Dermatol. Sci. (1)

T. Gambichler, A. Orlikov, R. Vasa, G. Moussa, K. Hoffmann, M. Stücker, P. Altmeyer, and F. G. Bechara, “In vivo optical coherence tomography of basal cell carcinoma,” J. Dermatol. Sci.45(3), 167–173 (2007).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

J. Qin, J. Jiang, L. An, D. Gareau, and R. K. Wang, “In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography,” Lasers Surg. Med.43(2), 122–129 (2011).
[CrossRef] [PubMed]

Nat. Med. (2)

E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, and R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med.7(7), 864–868 (2001).
[CrossRef] [PubMed]

B. J. Vakoc, R. M. Lanning, J. A. Tyrrell, T. P. Padera, L. A. Bartlett, T. Stylianopoulos, L. L. Munn, G. J. Tearney, D. Fukumura, R. K. Jain, and B. E. Bouma, “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15(10), 1219–1223 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

G. Liu, W. Jia, V. Sun, B. Choi, and Z. Chen, “High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography,” Opt. Express20(7), 7694–7705 (2012).
[CrossRef] [PubMed]

Opt. Lett. (1)

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Pediatr. Res. (1)

K. Weidlich, J. Kroth, C. Nussbaum, S. Hiedl, A. Bauer, F. Christ, and O. Genzel-Boroviczeny, “Changes in microcirculation as early markers for infection in preterm infants--an observational prospective study,” Pediatr. Res.66(4), 461–465 (2009).
[CrossRef] [PubMed]

Other (1)

R. A. Leitgeb, “Current technologies for high speed and functional imaging with optical coherence tomography,” in Advances in Imaging and Electron Physics, Volume 168: Optics of Charged Particle Analyzers, P. W. Hawkes, ed. (Elsevier, 2011), Chap. 3.

Supplementary Material (5)

» Media 1: AVI (1513 KB)     
» Media 2: AVI (3613 KB)     
» Media 3: AVI (1535 KB)     
» Media 4: AVI (4679 KB)     
» Media 5: AVI (1798 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Optical Setup of the xf-OCT system. Blue: detection path. SS: Swept source, FC: Fiber coupler, PC: Polarization control, DM: Dispersion matching, A: Axicon, M: Mirror, L1 to L6: Lenses, Galvo: Scanning mirrors, DBD: Dual-balanced detector. (b) Adapter plate, containing a cover glass window, taped on a hand palm, in front of the mating ring that surrounds the objective lens on the left.

Fig. 2
Fig. 2

Healthy skin of the palm. (a) OCT tomogram. Red bars indicate depth range for (b) and (c) respectively. SD: stratum disjunctum, SC: stratum corneum, VE: viable epidermis, PD: Papillary dermis, RS: Rete subpapillare, RD: reticular dermis, SF: subcutaneous fat. (b) and (c) 2 × 2 mm en-face mean projection over depth range indicated in (a) of the fly through the microvasculature starting from surface (Media 1). Scale bars indicate 250 µm in every picture.

Fig. 3
Fig. 3

Eczema on the forearm. (a) Dermascopy image with square indicating the OCT FOV. (b) OCT tomogram. Black and red bars indicate depth range for (c) and (d) respectively. (c) Intensity en-face mean projection for depth range in (b), dashed line indicates the tomogram position. (d) 2 × 2 mm en-face fly through the microvasculature starting from surface (Media 2). (e) Overlay of microcirculation on structural information. Scale bars indicate 250 µm in every picture.

Fig. 4
Fig. 4

Seborrhoeic dermatitis on the forehead. (a) Dermascopy image with square indicating the OCT FOV. (b) OCT tomogram. Black and red bars indicate depth range for (c) and (d) respectively. (c) Intensity en-face mean projection for depth range in (b), dashed line indicates the tomogram position. (d) 2 × 2 mm en-face fly through the microvasculature starting from surface (Media 3). (e) Overlay of microcirculation on structural information. Scale bars indicate 250 µm in every picture.

Fig. 5
Fig. 5

BCC on the forehead. (a) Dermascopy image with square indicating the OCT FOV. (b) OCT tomogram. Black and red bars indicate depth range for (c) and (d) respectively. (c) Intensity en-face mean projection for depth range in (b), dashed line indicates the tomogram position. (d) 2 × 2 mm en-face fly through the microvasculature starting from surface (Media 4). (e) Overlay of microcirculation on structural information. Scale bars indicate 250 µm in every picture.

Fig. 6
Fig. 6

BCC of the cheek. (a) Dermascopy image with square indicating the OCT FOV. (b) OCT tomogram. Black and red bars indicate depth range for (c) and (d) respectively. (c) Intensity en-face mean projection for depth range in (b), dashed line indicates the tomogram position. (d) 2 × 2 mm en-face fly through the microvasculature starting from surface (Media 5). (e) Overlay of microcirculation on structural information. Scale bars indicate 250 µm in every picture.

Tables (1)

Tables Icon

Table 1 Comparison between the different pathological conditions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P ( x , y i , z ) = ( I ( x , y i , z ) I ( x , y i + 1 , z ) ) 2 ,
M ( y ) = i = 0 N 1 ( [ x , z P ( x , y i , z ) ] < T ) .
V ( x , y , z ) = 1 M ( y ) i = 0 N 1 ( [ x , z P ( x , y i , z ) ] < T ) P ( x , y i , z ) .

Metrics