Abstract

We demonstrate a high-speed, image-based tracking scanning laser ophthalmoscope (TSLO) that can provide high fidelity structural images, real-time eye tracking and targeted stimulus delivery. The system was designed for diffraction-limited performance over an 8° field of view (FOV) and operates with a flexible field of view of 1°–5.5°. Stabilized videos of the retina were generated showing an amplitude of motion after stabilization of 0.2 arcmin or less across all frequencies. In addition, the imaging laser can be modulated to place a stimulus on a targeted retinal location. We show a stimulus placement accuracy with a standard deviation less than 1 arcmin. With a smaller field size of 2°, individual cone photoreceptors were clearly visible at eccentricities outside of the fovea.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
    [CrossRef] [PubMed]
  2. E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
    [CrossRef] [PubMed]
  3. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
    [CrossRef] [PubMed]
  4. C. R. Vogel, D. W. Arathorn, A. Roorda, and A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express14(2), 487–497 (2006).
    [CrossRef] [PubMed]
  5. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007).
    [CrossRef] [PubMed]
  6. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010).
    [CrossRef] [PubMed]
  7. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
    [CrossRef] [PubMed]
  8. S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg.21(5), S575–S580 (2005).
    [PubMed]
  9. J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in Proceedings of the NASA Image Registration Workshop (IRW97) (NASA Goddard Space Flight Center, MD, 1997), no. 19980236600
  10. American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007)
  11. S. B. Stevenson, A. Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope” in Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications,S.N. Spencer, ed. (Association for Computed Machinery, New York, 2010), pp. 195–198.
  12. R. Engbert and R. Kliegl, In The Mind’s Eyes: Cognitive and Applied Aspects of Eye Movements, J. Hyona, R. Radach, and H. Deubel, eds. (Elsevier, Oxford, 2003).103–117.
  13. S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
    [CrossRef] [PubMed]
  14. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  15. L. A. Riggs, J. C. Armington, and F. Ratliff, “Motions of the retinal image during fixation,” J. Opt. Soc. Am.44(4), 315–321 (1954).
    [CrossRef] [PubMed]
  16. L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res.8(2), 159–169 (1968).
    [CrossRef] [PubMed]
  17. T. N. Cornsweet and H. D. Crane, “Accurate two-dimensional eye tracker using first and fourth Purkinje images,” J. Opt. Soc. Am.63(8), 921–928 (1973).
    [CrossRef] [PubMed]
  18. H. D. Crane and C. M. Steele, “Generation-V dual-Purkinje-image eyetracker,” Appl. Opt.24(4), 527–537 (1985).
    [CrossRef] [PubMed]
  19. F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007).
    [CrossRef] [PubMed]
  20. M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
    [CrossRef] [PubMed]
  21. E. Midena, “Liquid crystal display microperimetry,” in Perimetry and the Fundus: an Introduction to Microperimetry, E. Midena, ed. (Slack, Thorofare, NJ, 2007), pp. 15–26.
  22. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express14(8), 3354–3367 (2006).
    [CrossRef] [PubMed]
  23. S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009).
    [CrossRef] [PubMed]

2012 (1)

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

2010 (2)

S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
[CrossRef] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010).
[CrossRef] [PubMed]

2009 (3)

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
[CrossRef] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (3)

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007).
[CrossRef] [PubMed]

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (1)

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg.21(5), S575–S580 (2005).
[PubMed]

2004 (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

1985 (1)

1973 (1)

1968 (1)

L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res.8(2), 159–169 (1968).
[CrossRef] [PubMed]

1954 (1)

Almarcegui, C.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Arathorn, D. W.

Armington, J. C.

Bigelow, C. E.

Burns, S. A.

Cornsweet, T. N.

Crane, H. D.

Cuenca, N.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Dolz, I.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Dubra, A.

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
[CrossRef] [PubMed]

Ferguson, R. D.

Fienup, J. R.

Fuertes, I.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Garcia-Martin, E.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Gómez-Vieyra, A.

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
[CrossRef] [PubMed]

Guizar-Sicairos, M.

Hammer, D. X.

Henry, L.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg.21(5), S575–S580 (2005).
[PubMed]

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

Hubel, D. H.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009).
[CrossRef] [PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Iftimia, N. V.

Iovin, R.

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007).
[CrossRef] [PubMed]

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Keane, P. A.

S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
[CrossRef] [PubMed]

Macknik, S. L.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009).
[CrossRef] [PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Malacara-Hernández, D.

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
[CrossRef] [PubMed]

Martinez-Conde, S.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009).
[CrossRef] [PubMed]

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Ouyang, Y.

S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
[CrossRef] [PubMed]

Parker, A.

Patel, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg.21(5), S575–S580 (2005).
[PubMed]

Pinilla, I.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Poletti, M.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Poonja, S.

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg.21(5), S575–S580 (2005).
[PubMed]

Ratliff, F.

Redner, G.

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007).
[CrossRef] [PubMed]

Riggs, L. A.

L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res.8(2), 159–169 (1968).
[CrossRef] [PubMed]

L. A. Riggs, J. C. Armington, and F. Ratliff, “Motions of the retinal image during fixation,” J. Opt. Soc. Am.44(4), 315–321 (1954).
[CrossRef] [PubMed]

Rodriguez-Mena, D.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Roorda, A.

Rucci, M.

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007).
[CrossRef] [PubMed]

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Sadda, S. R.

S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
[CrossRef] [PubMed]

Sancho, E.

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Santini, F.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007).
[CrossRef] [PubMed]

Schick, A. M.

L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res.8(2), 159–169 (1968).
[CrossRef] [PubMed]

Sincich, L. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

Steele, C. M.

Thurman, S. T.

Tiruveedhula, P.

Troncoso, X. G.

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009).
[CrossRef] [PubMed]

Updike, J. F.

S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
[CrossRef] [PubMed]

Ustun, T. E.

Vogel, C. R.

Walsh, A. C.

S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
[CrossRef] [PubMed]

Williams, D. R.

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
[CrossRef] [PubMed]

Yang, Q.

Zhang, Y.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Behav. Res. Methods (1)

F. Santini, G. Redner, R. Iovin, and M. Rucci, “EyeRIS: a general-purpose system for eye-movement-contingent display control,” Behav. Res. Methods39(3), 350–364 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. R. Sadda, P. A. Keane, Y. Ouyang, J. F. Updike, and A. C. Walsh, “Impact of scanning density on measurements from spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(2), 1071–1078 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (2)

J. Refract. Surg. (1)

S. Poonja, S. Patel, L. Henry, and A. Roorda, “Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope,” J. Refract. Surg.21(5), S575–S580 (2005).
[PubMed]

Nat. Neurosci. (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

Nat. Rev. Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, and D. H. Hubel, “The role of fixational eye movements in visual perception,” Nat. Rev. Neurosci.5(3), 229–240 (2004).
[CrossRef] [PubMed]

Nature (1)

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express17(21), 18906–18919 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Retina (1)

E. Garcia-Martin, I. Pinilla, E. Sancho, C. Almarcegui, I. Dolz, D. Rodriguez-Mena, I. Fuertes, and N. Cuenca, “Optical coherence tomography in retinitis pigmentosa: reproducibility and capacity to detect macular and retinal nerve fiber layer thickness alterations,” Retina32(8), 1581–1591 (2012).
[CrossRef] [PubMed]

Trends Neurosci. (1)

S. Martinez-Conde, S. L. Macknik, X. G. Troncoso, and D. H. Hubel, “Microsaccades: a neurophysiological analysis,” Trends Neurosci.32(9), 463–475 (2009).
[CrossRef] [PubMed]

Vision Res. (1)

L. A. Riggs and A. M. Schick, “Accuracy of retinal image stabilization achieved with a plane mirror on a tightly fitting contact lens,” Vision Res.8(2), 159–169 (1968).
[CrossRef] [PubMed]

Other (5)

J. B. Mulligan, “Recovery of motion parameters from distortions in scanned images,” in Proceedings of the NASA Image Registration Workshop (IRW97) (NASA Goddard Space Flight Center, MD, 1997), no. 19980236600

American National Standard for the Safe Use of Lasers, ANSI Z136.1–2007 (Laser Institute of America, Orlando, 2007)

S. B. Stevenson, A. Roorda, and G. Kumar, “Eye tracking with the adaptive optics scanning laser ophthalmoscope” in Proceedings of the 2010 Symposium on Eye-Tracking Research and Applications,S.N. Spencer, ed. (Association for Computed Machinery, New York, 2010), pp. 195–198.

R. Engbert and R. Kliegl, In The Mind’s Eyes: Cognitive and Applied Aspects of Eye Movements, J. Hyona, R. Radach, and H. Deubel, eds. (Elsevier, Oxford, 2003).103–117.

E. Midena, “Liquid crystal display microperimetry,” in Perimetry and the Fundus: an Introduction to Microperimetry, E. Midena, ed. (Slack, Thorofare, NJ, 2007), pp. 15–26.

Supplementary Material (2)

» Media 1: AVI (3451 KB)     
» Media 2: AVI (3943 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A 2-D optical design schematic of the TSLO. Light exiting the super luminescent diode (SLD) is coupled into the acousto-optic modulator (AOM) before entering the system. The light is collimated and sent through a basic 4f series of lenses onto an adjustable aperture (A1). Light travels through three mirror based telescope assemblies (f = 250 mm) to the human eye. Light is then reflected off the retina and sent back through the system into the light detection arm. Another series of lenses in a 4f configuration relays the light to be collected by a photomultiplier tube (PMT). A 50 µm pinhole (1.95 Airy disc diameters for a 4mm pupil) is placed at the retinal conjugate plane prior to the PMT for confocality. The intensity (I) of the signal is sent to the PC for readout. This is a schematic layout, the actual components are not aligned in a single plane (see Fig. 2).

Fig. 2
Fig. 2

Opto-mechanical design (to scale) of the TSLO on a 60 cm x 30 cm breadboard (length x width). The telescope assemblies are built in such a way so as to limit system astigmatism through the varying of beam heights and angles. Note the changing of beam heights as the light propagates through the system to the eye. Light source, acousto-optic modulator (AOM) and chin rest not shown.

Fig. 3
Fig. 3

Geometric spot diagrams contained within the calculated Airy discs at nine points spanning the 8° FOV (λ = 840 nm with a pupil size of 4 mm). The coordinates represent the field location in degrees.

Fig. 4
Fig. 4

Recovery of eye motion. Each frame is broken into strips that are cross correlated with the reference frame (left) in order to determine the (x,y) displacements. In the current implementation, these cross-correlations are made to the nearest pixel.

Fig. 5
Fig. 5

Timelines for targeted stimulus delivery. The figure shows a cropped region of an SLO frame split into 16 pixel segments as indicated by the dashed white lines. With a 16 kHz line rate, each 16 pixel segment takes 1 msec to complete as indicated on the right side of the figure. The right indicators show time points for the critical tasks involved in delivering a stimulus, in this case a black circle, to a targeted location. A, Center location of the 32-pixel image strip where position estimate is to be made. B, The final line in the current 32-pixel image strip is scanned and the complete strip is recorded into the FPGA memory. C, The image strip is read into the PC/GPU. D, The eye position at time t relative to the reference frame is estimated by the GPU. E, The time from t to the first line of the buffer that contains the estimated position of the stimulus is computed. F, Make decision: Is there enough time to wait for the next strip before arming the AOM buffer with the stimulus? If YES, then wait for next strip and repeat process. If NO, then proceed to step G. G, Load AOM buffer so it is armed to play out the stimulus while the beam scans over the target. H, Start playing out the AOM buffer at this strip. I, Start delivering the stimulus (note: when the stimulus is greater than 64 pixels in size, steps B to I are repeated for every strip that the stimulus occupies).

Fig. 6
Fig. 6

Motion amplitude reduction as a function of input frequency for the model eye. For input frequencies just over 100 Hz, the reduction in amplitude is still over 80%.

Fig. 7
Fig. 7

Amplitude of eye motion vs. input frequency. The blue curve represents the actual motion as a function of frequency during normal fixation recorded in the raw video. The pink line represents the residual motion of features in the retinal video after stabilization. The resultant amplitude with stabilization is 0.2 arcminutes or less across all frequencies.

Fig. 8
Fig. 8

Registered sum of 300 frames from a movie sequence (Media 1) where the stimulus was tracking a targeted retinal location.

Fig. 9
Fig. 9

Left, a single frame from the 300 frame movie entitled “Stimulus accuracy” showing the centroid of the circle stimulus superimposed upon the retina (Media 2). Right, motion error, including microsaccades, for a 300 frame movie. The red diamonds in the graph and media file indicate the frames in which the stimulus delivery failed.

Fig. 10
Fig. 10

Image of the cone photoreceptor mosaic of an emmetropic eye at 4° eccentricity from the fovea. The image is an average of 300 stabilized frames from a single 10-second stabilized video. The bright white circles are individual cone photoreceptors, while the dark shadows extending from the lower left corner into the center of the image are blood vessels.

Tables (1)

Tables Icon

Table 1 Comparison of the TSLO to other current eye tracking modalities [4]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V e l o c i t y T h r e s h o l d = 3.44 × F i e l d S i z e ,

Metrics