Abstract

In in vivo spectroscopy, there are differences between individual subjects in parameters such as tissue scattering and sample concentration. We propose a method that can provide the absolute value of a particular substance concentration, independent of these individual differences. Thus, it is not necessary to use the typical statistical calibration curve, which assumes an average level of scattering and an averaged concentration over individual subjects. This method is expected to greatly reduce the difficulties encountered during in vivo measurements. As an example, for in vivo absorption spectroscopy, the method was applied to the reflectance measurement in retinal vessels to monitor their oxygen saturation levels. This method was then validated by applying it to the tissue phantom under a variety of absorbance values and scattering efficiencies.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, “Beam propagation in an absorbing medium,” in Principles of Optics 7th Ed. (Cambridge University Press, Cambridge, 2002).
  2. J. H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae (1760) [Published in German by E. Anding under the title Lambert’s Photometrie, (Verlag von Wilhelm Engelmann, Leipzig, 1892)].
  3. A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Annal. Phys. Chem.86, 78–88 (1852).
  4. J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
    [PubMed]
  5. M. H. Smith, K. R. Denninghoff, A. Lompado, and L. W. Hillman, “Effect of multiple light paths on retinal vessel oximetry,” Appl. Opt.39(7), 1183–1193 (2000).
    [CrossRef] [PubMed]
  6. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt.37(4), 779–791 (1998).
    [CrossRef] [PubMed]
  7. H. M. Heise, “Applications of near-infrared spectroscopy in medical sciences,” Near-Infrared Spectroscopy, H. W. Siesler, Y. Ozeki, S. Kawata, and H. M. Heise ed. (Wiley VCH Verlag GmbH, Weinheim, 2002).
  8. A. J. Cohen and R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng.BME-23(5), 391–400 (1976).
    [CrossRef] [PubMed]
  9. S. Prahl, “Optical absorption of hemoglobin.” http://omlc.ogi.edu/spectra/hemoglobin .
  10. P. Kubelka and F. Munk, ““Ein Beitrag zur Optik der Farbanstriche,” Zeits. f,” Tech. Phys.12, 593–601 (1931).
  11. S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
    [CrossRef] [PubMed]
  12. Medical electrical equipment Part 2: Particular requirements for the safety of diagnostic and therapeutic laser equipment, IEC 60101–2-22 and IEC 60825–1. Japanese Industrial Standards, JIS C 6802–2005.
  13. J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
    [CrossRef] [PubMed]
  14. F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
    [CrossRef] [PubMed]
  15. J. M. Steinke and A. P. Shepherd, “Comparison of Mie theory and the light scattering of red blood cells,” Appl. Opt.27(19), 4027–4033 (1988).
    [CrossRef] [PubMed]
  16. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991).
    [CrossRef]
  17. D. Link, C. Strohmaier, B. U. Seifert, T. Riemer, H. A. Reitsamer, J. Haueisen, and W. Vilser, “Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis,” Biomed. Opt. Express2(11), 3094–3108 (2011).
    [CrossRef] [PubMed]
  18. J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit.3(2), 135–138 (1987).
    [CrossRef] [PubMed]

2011 (2)

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

D. Link, C. Strohmaier, B. U. Seifert, T. Riemer, H. A. Reitsamer, J. Haueisen, and W. Vilser, “Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis,” Biomed. Opt. Express2(11), 3094–3108 (2011).
[CrossRef] [PubMed]

2006 (1)

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
[PubMed]

1998 (1)

1996 (1)

F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
[CrossRef] [PubMed]

1991 (1)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991).
[CrossRef]

1988 (1)

1987 (1)

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit.3(2), 135–138 (1987).
[CrossRef] [PubMed]

1976 (1)

A. J. Cohen and R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng.BME-23(5), 391–400 (1976).
[CrossRef] [PubMed]

1931 (1)

P. Kubelka and F. Munk, ““Ein Beitrag zur Optik der Farbanstriche,” Zeits. f,” Tech. Phys.12, 593–601 (1931).

1852 (1)

A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Annal. Phys. Chem.86, 78–88 (1852).

Arvidsson, H. S.

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

Bays, R.

Beach, J. M.

J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
[PubMed]

Beer, A.

A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Annal. Phys. Chem.86, 78–88 (1852).

Cesar, R. M.

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
[CrossRef] [PubMed]

Cohen, A. J.

A. J. Cohen and R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng.BME-23(5), 391–400 (1976).
[CrossRef] [PubMed]

Cree, M. J.

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
[CrossRef] [PubMed]

Denninghoff, K. R.

Dögnitz, N.

Gelb, A. W.

F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
[CrossRef] [PubMed]

Goedhart, P. T.

F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
[CrossRef] [PubMed]

Haueisen, J.

Henny, C. P.

F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
[CrossRef] [PubMed]

Hillman, L. W.

Honda, Y.

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit.3(2), 135–138 (1987).
[CrossRef] [PubMed]

Jelinek, H. F.

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
[CrossRef] [PubMed]

Jensen, A. S.

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

Kienle, A.

Kim, D.

J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
[PubMed]

Kubelka, P.

P. Kubelka and F. Munk, ““Ein Beitrag zur Optik der Farbanstriche,” Zeits. f,” Tech. Phys.12, 593–601 (1931).

Laing, R. A.

A. J. Cohen and R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng.BME-23(5), 391–400 (1976).
[CrossRef] [PubMed]

Larsen, M.

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

Leandro, J. J. G.

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
[CrossRef] [PubMed]

Link, D.

Lompado, A.

Mokken, F. C.

F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
[CrossRef] [PubMed]

Munch, I. C.

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

Munk, F.

P. Kubelka and F. Munk, ““Ein Beitrag zur Optik der Farbanstriche,” Zeits. f,” Tech. Phys.12, 593–601 (1931).

Patterson, M. S.

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt.37(4), 779–791 (1998).
[CrossRef] [PubMed]

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991).
[CrossRef]

Reitsamer, H. A.

Riemer, T.

Schwenzer, K. J.

J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
[PubMed]

Seifert, B. U.

Severinghaus, J. W.

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit.3(2), 135–138 (1987).
[CrossRef] [PubMed]

Shepherd, A. P.

Smith, M. H.

Soares, J. V. B.

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
[CrossRef] [PubMed]

Søndergaard, L.

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

Srinivas, S.

J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
[PubMed]

Steinke, J. M.

Strohmaier, C.

Tiedeman, J. S.

J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
[PubMed]

Traustason, S.

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

van den Bergh, H.

van der Waart, F. J. M.

F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
[CrossRef] [PubMed]

Vilser, W.

Wagnieres, G.

Wilson, B. C.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991).
[CrossRef]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991).
[CrossRef]

Ann. Hematol. (1)

F. C. Mokken, F. J. M. van der Waart, C. P. Henny, P. T. Goedhart, and A. W. Gelb, “Differences in peripheral arterial and venous hemorheologic parameters,” Ann. Hematol.73(3), 135–137 (1996).
[CrossRef] [PubMed]

Annal. Phys. Chem. (1)

A. Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten,” Annal. Phys. Chem.86, 78–88 (1852).

Appl. Opt. (3)

Biomed. Opt. Express (1)

IEEE Trans. Biomed. Eng. (1)

A. J. Cohen and R. A. Laing, “Multiple scattering analysis of retinal blood oximetry,” IEEE Trans. Biomed. Eng.BME-23(5), 391–400 (1976).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

J. V. B. Soares, J. J. G. Leandro, R. M. Cesar, H. F. Jelinek, and M. J. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25(9), 1214–1222 (2006).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

S. Traustason, A. S. Jensen, H. S. Arvidsson, I. C. Munch, L. Søndergaard, and M. Larsen, “Retinal oxygen saturation in patients with systemic hypoxemia,” Invest. Ophthalmol. Vis. Sci.52(8), 5064–5067 (2011).
[CrossRef] [PubMed]

J. Appl. Physiol. (1)

J. M. Beach, K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1999).
[PubMed]

J. Clin. Monit. (1)

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit.3(2), 135–138 (1987).
[CrossRef] [PubMed]

Lasers Med. Sci. (1)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application,” Lasers Med. Sci.6(2), 155–168 (1991).
[CrossRef]

Tech. Phys. (1)

P. Kubelka and F. Munk, ““Ein Beitrag zur Optik der Farbanstriche,” Zeits. f,” Tech. Phys.12, 593–601 (1931).

Other (5)

H. M. Heise, “Applications of near-infrared spectroscopy in medical sciences,” Near-Infrared Spectroscopy, H. W. Siesler, Y. Ozeki, S. Kawata, and H. M. Heise ed. (Wiley VCH Verlag GmbH, Weinheim, 2002).

S. Prahl, “Optical absorption of hemoglobin.” http://omlc.ogi.edu/spectra/hemoglobin .

Medical electrical equipment Part 2: Particular requirements for the safety of diagnostic and therapeutic laser equipment, IEC 60101–2-22 and IEC 60825–1. Japanese Industrial Standards, JIS C 6802–2005.

M. Born and E. Wolf, “Beam propagation in an absorbing medium,” in Principles of Optics 7th Ed. (Cambridge University Press, Cambridge, 2002).

J. H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae (1760) [Published in German by E. Anding under the title Lambert’s Photometrie, (Verlag von Wilhelm Engelmann, Leipzig, 1892)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Molar extinction coefficient spectra of oxy-hemoglobin (red) and deoxy-hemoglobin (blue). The blue line and red line represent the spectra for 0% and 100% oxygen saturation, respectively.

Fig. 2
Fig. 2

Calculated reflectance spectra for a mixture of oxy- and deoxy-hemoglobin for three thicknesses of the sample cell (25, 50, and 100 μm). The red, orange, and blue lines indicate oxygen saturation levels of 100%, 50%, and 0%, respectively. (a)–(c) At a fixed wavelength of 600 nm, conventional measurements of the intensity give different reflectance ratios (owing to the differences in the reflectances for different oxygen saturation levels) for the three different sample thicknesses. Specifically, the relative position of the orange arrow shifts toward that of the blue arrow as cell thickness increases. (d)–(f) In contrast, at a fixed reflectance, the lateral measurements of wavelength give a constant wavelength ratio that is independent of the sample thickness. Here, the assumed reflectance was set by reference to oxy-hemoglobin at a wavelength of 598 nm.

Fig. 3
Fig. 3

Molar extinction coefficient spectra of oxy-hemoglobin (HbO2, indicated by the curve with the double peak structure and the line with the short dashes), and of deoxy-hemoglobin (Hb, indicated by the curve with the single peak and the line with the long dashes) in the visible light range. The solid curve represents a spectrum measured at an unknown saturation level.

Fig. 4
Fig. 4

Spectral imaging system for the retina. An ocular fundus camera was created for imaging the human retina. The spectroscopic light source was constructed mainly from a halogen illumination lamp as the white light source. A wavelength-variable filter was included.

Fig. 5
Fig. 5

Sampled points for retinal oximetry with the same absorbance at the isosbestic wavelength, 584 nm.

Fig. 6
Fig. 6

Reflectance spectra of the retinal vessels, sampled at the points shown in Fig. 5.

Fig. 7
Fig. 7

The absorption coefficients and the photos of the artificial blood, which were similar to oxy-hemoglobin (red line) and deoxy-hemoglobin (blue line) in the 500–650 nm wavelength range.

Fig. 8
Fig. 8

The reflectance spectra of the artificial blood whose absorbance is 0.6 on each scattering substrate: the mirror (no scattering), the paraffin (weak scatterer), and the paper (strong scatterer).

Tables (2)

Tables Icon

Table 1 Oxygen saturation levels at observed wavelengths λa and λm for an artery and a vein of equal intensity

Tables Icon

Table 2 Estimated saturation of the artificial blood for various absorbance values and substrates

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

log( I I 0 )=αL+S=εcL+S.
f ( x,λ ) =x f ( 1,λ ) +( 1x ) f ( 0,λ ) .
f ( 1, λ a ) = f ( x, λ m ) .
f ( 1, λ a ) =x f ( 1, λ m ) +( 1x ) f ( 0, λ m ) .
x= f ( 1, λ a ) f ( 0, λ m ) f ( 1, λ m ) f ( 0, λ m ) .
x= f ( 1, λ a =597 ) f ( 0, λ m =612 ) f ( 1, λ m =612 ) f ( 0, λ m =612 ) = 50948591 13648591 =0.4839.

Metrics